Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5200 + 5199 + 5198 = 5198.(1+5+52) = 5198.31 chia hết cho 31 (đpcm)
b, 32001+32000+31999 = 31998.(3+32+33) = 31998.39 chia hết cho 39 (đpcm)
ta sẽ có:
5200+5199+5198=5+(200+199+198)=5697
Suy ra ta có công thức(trong sách giáo khoa) nên 5697 chia hết cho 31
chúc bạn học tốt
thank you,lần sau có câu gì thì cứ hỏi mình nha!chúc bạn một ngày tốt lành
Ta có : \(5^{200}+5^{199}+5^{198}\)
\(=5^{198}\left(5^2+5^1+5^0\right)\)
\(=5^{198}\left(25+5+1\right)\)
=\(5^{198}.31\)chia hết cho 31
a) A=5(1+5)+53(1+5)+...+5199(1+5)
=(1+5)(5+53+....+5199) chia hết cho 6
b) A:31 dư 30 hay A-30 chia hết cho 31
Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)
31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư
Ta có:
A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chia hết cho 2; 1 không chia hết cho 2
=> n.(n + 1) + 1 không chia hết cho 2
=> A không chia hết cho 2 (đpcm)
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
=> A không chia hết cho 5 (đpcm)
Ủng hộ mk nha ^_-
\(A=n^2+n+1=n\left(n+1\right)+1\) \(\left(n\in N\right)\)
a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn
=>n(n+1) là số chẵn
=>n(n+1)+1 là số lẻ
=>A ko chia hết cho 2 (đpcm)
b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9
=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0
=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0
Hay n(n+1) có thể có tận cùng là: 0;2;6
=>n(n+1)+1 có thể có tận cùng là 1;3;7
=>A ko chia hết cho 5 (đpcm)
dễ thôi mà , mk hướng dẫn nhé :
a) S= 5^198+5^199+5^200
= (5^198+5^2)+( 5^198+5^1)+5^200
= 5^198.31
=> S chia hết cho 31
bài này thế đó
nhớ t nha
S=5198+5199+5200
S= 5198 ( 1 + 5 +25 )
S = 5198 . 31 chia hết cho 31
Vậy S chia hết cho 31.