Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy...
b, Đặt A là tên của tổng trên
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B là biêu thức trong ngoặc
Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow B< 2-\frac{1}{50}< 2\)
Thay B vào A ta được:
\(A< \frac{1}{2^2}.2=\frac{1}{2}\)
Bài 1 :
Ta có;\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}>\frac{1}{30}.10=\frac{1}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}.30>\frac{1}{30}.24=\frac{2}{5}\)
Do đó :
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{3}+\frac{2}{5}=\frac{11}{15}\left(1\right)\)
Mặt khác :
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}.20=1\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}.20=\frac{1}{2}\)
Do đó :
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< 1+\frac{1}{2}=\frac{3}{2}\left(2\right)\)
Từ (1 ) và (2) ta suy ra điều phải chứng minh
Bài 2 :
Đặt \(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}\)
MỘT MẶT ,TA CÓ THỂ VIẾT
\(S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)\(+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}\right)\)\(+\left(\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}+\frac{1}{64}\right)-\frac{1}{64}\)
\(>\frac{1}{2}.2+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32-\frac{1}{64}\)\(=\frac{7}{2}-\frac{1}{64}=\frac{223}{64}>\frac{192}{64}=3\left(1\right)\)
Mặt khác ,ta lại có\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)\)\(+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)\)\(+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)< \)\(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32=6\left(2\right)\)
Từ (1) và (2 ) ta kết luận \(3< S< 6\)
Chúc bạn học tốt ( -_- )
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy B<1
Hok tốt
Đặt A= 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 A = 1/21 - 1/22 + 1/23 - 1/24 + 1/25 - 1/26 2A = 1 - 1/2 + 1/22 -1/23 + 1/24 - 1/25
2A + A = (1 - 1/2 + 1/22 - 1/23 + 1/24 - 1/25) + (1/2 - 1/22 + 1/23 - 1/24 + 1/25 + 1/26)
3A = 1 + (-1/2 + 1/2) + (-1/22+1/22) + (-1/23 + 1/23) + (-1/24 + 1/24) + (-1/25 + 1/25) - 1/26
3A = 1 - 1/26 = 63/64 suy ra A = 63/64 : 3 = 21/64
Vì 21/64 < 21/63 = 1/3 nên A< 1/3 (ĐIỀU PHẢI CHỨNG TỎ)
nếu chị chứng minh đc 1/4 + 1/16 +1/64 < 1/3 thì đc ạ
chúc chị học tốt! :)
Đặt A là tên biểu thức
\(A=1-\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}\)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2^2n^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)(đpcm)