K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

1/n - 1/n+1 = n+1/n(n+1) - n/n(n+1) = n+1-n/n(n+1) = 1/n(n+1)

Vậy 1/n(n+1) = 1/n - 1/n+1

21 tháng 3 2017

Ta có : Quy tắc 1/n+(n+1) = 1/n - 1/n+1

11 tháng 3 2017

Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

27 tháng 2 2017

Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

Vậy \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

8 tháng 3 2016

Cho mình 5 phút, bài này mình làm rồi

8 tháng 3 2016

bạn quy đồng vs mẫu chung là n(n+1) ta có tử 2 phân số là n+1 và n

=>n+1/n(n+1)  -  n/n(n+1)=1/n(n+1)

tk mk

15 tháng 5 2018

please help me = làm ơn giúp tôi

TÔI CẦN GIÚP ĐỠ NGAY BÂY GIỜ

15 tháng 5 2018

Gọi d là UCLN(n;n+1)

Suy ra: n chia hết cho d; n+1 chia hết cho d (1)

=> (n+1)-n chia hết cho d => 1 chia hết cho d (2)

Từ (1) và (2) => d=+1

vậy  mọi phân số có dạng n/n+1(với n thuộc N,n khác 0)

22 tháng 2 2019

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

16 tháng 3 2017

a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N      n khác 0

b) A=1/1*2+1/2*3+1/3*4+...+1/9.10

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

A=1-1/10=9/10

Vậy A = 9/10

2 tháng 5 2015

Câu a: Không hỏi nên không trả lời

Câu b:Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 là phân số tối giản

Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì: \(1-\frac{1}{50}\)<\(1\)

Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)