K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Gọi d là USC của (n+1; 2n+3)

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\) <=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)<=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

<=> [(2n+3)-(2n+2)]\(⋮\)d <=> 1\(⋮\)d => d=1

Vậy USCLN của (n+1; 2n+3) là 1 => số có dạng \(\frac{n+1}{2n+3}\)là phân số tối giản

2 tháng 4 2016

c)

goi D LA U (6N+7;2N+1)

  1. =>6N+7 5CHIAHET CHO D

=>2N+1 CHIA HET CHO D

=>1(6N+7) CHIA HET CHO D

=>3(2N+6) CHIA HETS CHO D

=>[6N+7)-(6N+6)] CHIA HET CHO D

=>D CHIA HET CHO D

=>D=1

=>6N+7/2N+1 LA P/S TOI GIAN

1 tháng 9 2016

a/ Gọi ƯCLN(2n+5,n+3) = d \(\left(d\ge1\right)\)

Ta có : \(\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\) \(\Rightarrow\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d\le1\)

mà \(d\ge1\Rightarrow d=1\)

Từ đó có đpcm

 

1 tháng 9 2016

Ta có \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để B là số nguyên thì \(n+3\inƯ\left(1\right)\)

Xét các trường hợp sẽ ra

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

28 tháng 2 2022

cíu batngo

Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)

\(\Leftrightarrow-1⋮d\)

=>d=1

=>UCLN(2n+1;3n+2)=1

=>2n+1/3n+2 là phân số tối giản