K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

Dễ lắm, bạn thử suy nghĩ đi!

21 tháng 2 2017

Gọi d là  UCLN của tử và mẫu

12n+1 chia hết cho d                  60n+5 chia hết cho d

                                =>

30n+2 chia hết cho d                  60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=> 1 chia hết cho d

d thuộc Ư(1)=1

ƯCLN(12n+1;30n+2)=1

Vậy 12n+1/30n+2 là p/s tối giản

3 tháng 5 2019

a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :

12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d

30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d

-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d

=> 1 chia hết cho d

vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau

=> \(\frac{12n+1}{30n+2}\)là phân số tối giản

3 tháng 5 2019

b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

24 tháng 5 2016

Gọi UCLN(2n +5; 3n +7) là d \(\left(d\ge1\right)\)

=> 2n +5 chia hết cho d ; 3n+7 chia hết cho d

=> 3n+7 - (2n+5) = n + 2 chia hết cho d 

=> 2n+4) chia hết cho d

mà 2n+5 = (2n+4) +1 chia hết cho d

=> 1 chia hết cho d 

=> \(d\le1\)mà \(d\ge1\)=> d = 1

Vậy UCLN(2n+5 ; 3n+7) = 1

24 tháng 5 2016

Gọi d làƯCLN (2n + 5; 3n + 7)

=> 2n + 5  chia hết cho d => 3.(2n + 5) = 6n + 15 chia hết cho d (1) 

=> 3n + 7 chia hết cho d => 2.(3n + 7) = 6n + 14 chia hết cho d (2)

Từ (1) và (2) => (6n + 15) - (6n + 14) = 6n + 15 - 6n - 14 = 1 chia hết cho d

=> d = 1

=>ƯWCLN (2n + 5; 3n + 7) = 1 (Đpcm).

9 tháng 4 2020

1/1.2 +1/2.3 +1/3.4 +...+ 1/49.50

=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

=1-1/50<1

9 tháng 4 2020

1/1.2 + 1/2.3 +1/3.4 + ... + 1/49.50 ( chỗ này 49.50 chứ ko phải 49+50 đâu nha)

= 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 (-1/2+1/2 là hết cứ như z thì chỉ còn lại 1-1/50)

=1-1/50 <1 

14 tháng 1 2016

 

1+1²+1³+...+1^2004

=1+1+1+...+1

=2014.1=2014 không chia hết cho 4 bạn xem lại xem

14 tháng 1 2016

bạn kiểm tra lại đề đi

ko chia hết cho 7 đâu