K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

a) Gọi tổng là A. Ta có :

A = ( 21 + 22 ) + ( 23 + 24 ) + ... + ( 299 +2100 )

A = 21 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 299 ( 1 + 2 )

A = 3 . ( 21 + 23 + ... + 299 )

\(\Rightarrow\)A chia hết cho 3 ( đpcm )

b) Gọi tổng là B. Ta có :

B = ( 31 + 32 + 33 ) + ... + ( 31996 + 31997 + 31998 )

B = 31 ( 1 + 2 + 10 ) + ... + 31996 ( 1 + 2 + 10 )

B = 13 . ( 31 + ... + 31996 )

\(\Rightarrow\)B chia hết cho 13 ( đpcm )

 

 

24 tháng 1 2018

a,A=1+2^2+2^3+.....2^100

     =(1+2^2)+(2^3+2^4)+.....+(2^99+2^100)

    =1.(1+2)+2^3.(1+2)+......+2^99.(1+2)

   =3.(1+2^2+2^3+2^3+.......+2^100)

   =3.k

Vì 3.k hay 3k chia hết cho 3

Suy ra A chia hết cho 3 

Mk làm vậy ko biết có đúng không nhưng bạn nha

Vì mình đã dành thời gian của mình giải cho bạn rồi đó~

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

26 tháng 11 2015

ta đảo  ngược A lại ta có 1+112+113+...+119

2A=112+113+114+....+119+1110

lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5

 

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

7 tháng 10 2015

Chứng minh rằng:
a) 3 + 32 +.....+ 31998 

 = (3 + 32)+(33+34) +(35+36) .....+ (31997+31998 )

            có 1998: 2 = 999 nhóm 

= (3 + 32) + 32.(3 + 32) +34.(3 + 32) .....+ 31996(3 + 32)

= 12 + 32.12 +34.12 +....+ 31996.12

= 12( 1+32+34+.......+31996)  chia hết cho 12
b) 3 + 3+....+ 31998 

= (3 + 3+33) + (34 + 3+36) + .. + (31996 + 31997 +31998)  có 1998 : 3 = 666 nhóm

= (3 + 3+33) + 33.(3 + 3+33)+ ...+31995.(3 + 3+33)

= 39 +33.39 + .....+31995.39

= 39(1+33+....+31995) chia hết cho 39

c) 3 + 3+.....+ 3100 chia hết cho 120

nhóm mỗi nhóm 4 số hạng tương tự như hai câu trên ta được thừa số chung là 120

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.