Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)
=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(A>\frac{1}{5}-\frac{1}{101}\)
=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)
Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< \frac{1}{4}-\frac{1}{100}\)
=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)
\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}\right)+\left(\frac{1}{11}+...+\frac{1}{17}\right)\)
< 1/5 . 5 + 1/11.7 = 1+1/7 < 2
=>ĐPCM
Ta có :
\(M=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< \frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{17.18}\)\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{18}=\frac{1}{5}-\frac{1}{18}=\frac{13}{90}< 1< 2\)
\(\Rightarrow\)\(M< 1< 2\)
Vậy \(M< 2\)
B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<1\)
\(B<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}\)
\(B<1-\frac{1}{8}<1\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(B< 1-\frac{1}{8}< 1\)
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{17}\right)\)
Ta có: \(\frac{1}{5}=\frac{1}{5};\frac{1}{6}< \frac{1}{5};\frac{1}{7}< \frac{1}{5};\frac{1}{8}< \frac{1}{5};\frac{1}{9}< \frac{1}{5}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}< \frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}\left(5ps\right)=\frac{1}{5}\cdot5=1\left(1\right)\)
Lại có: \(\frac{1}{10}< \frac{1}{8};\frac{1}{11}< \frac{1}{8};...;\frac{1}{17}< \frac{1}{8}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+...+\frac{1}{17}< \frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\left(8ps\right)=\frac{1}{8}\cdot8=1\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}< 1+1=2\)
P/s: k hỉu thì hỏi
Tại sao lại phải so sánh 5ps đầu vs 1/5 và các ps còn lại vs 1/8 mà ko phải là ps khác vậy?