Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy 1/101>1/150 ; 1/102>1/150 ; .... ; 1/149>1/150 ; 1/150=1/150
suy ra 1/101+1/102+1/103+.....+1/149+1/150>50.1/150
1/101+1/102+1/103+.....+1/148+1/150>1/3
Tách A thành 2 nhóm A1 , A2
A1 = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
A2 = \(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\)
\(\Rightarrow\)A = A1 + A2 > \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Ta có:
\(\frac{1}{101}\)>\(\frac{1}{200}\)
\(\frac{1}{102}\)>\(\frac{1}{200}\)
\(\frac{1}{103}\)>\(\frac{1}{200}\)
...
\(\frac{1}{200}\)=\(\frac{1}{200}\)
\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)
\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)
1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )
1/101+1/102+....+1/200(có 100 số )
Vì 1/101>1/200
1/102>1/100
......
1/199>1/200
1/200=1/200
=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số
=>1/101+1/102+.....+1/200>1/2
Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)
Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên :
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Vì : 1/101 > 1/300 ; 1/102 > 1/300 .... ; 1/299 >1/300 ; Do 1/101.....1/300 có 200 số
=>1/101+1/102+....+1/299+1/300 > 1/300 x 200
> 2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(..........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) (có 100 số \(\frac{1}{200}\) )\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{2}\) (đpcm)
Ta có:
1/101>1/200
1/102>1/200
...
1/199>1/200
=>1/101+1/102+...+1/103>1/200+1/200+...+1/200(100 số 1/200)
=1/200.100=1/2
Vậy 1/101+1/102+1/103+...+1/200>1/2
Ta thấy tổng trên có 50 số hạng .
Ta có:
1/101>1/150
1/102>1/150
...
1/149>1/150
1/150=1/150
=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150
---50 số hạng 1/150-------
=>1/101+1/102+...+1/149+1/150>1/150.50
=>1/101+1/102+...+1/149+1/150>50/150
=>1/101+1/102+...+1/149+1/150>1/3
em lạy chị Nguyễn Trà My cho em **** đi mà