K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

a)gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

và n+1 chia hết cho d

=>2(n+1) chia hết cho d

=>2n+3-2(n+1)chia hết cho d

hay 1chia hết cho d

=>d=1

=>phân số \(\dfrac{n+1}{2n+3}\)tối giản

b)Gọi d là ƯCLN(2n+3;4n+8)

=>4n+8chia hết cho d

và 2n+3 chia hết cho d

=>2(2n+3) chia hết cho d

=>4n+8-2(2n+3) chia hết cho d

hay 2 chia hết cho d

Do 2n+3 là số lẻ và 2n+3 chia hết cho d

=>d không thể là số chẵn=>d=1

=>phân số \(\dfrac{2n+3}{4n+8}\) tối giản

9 tháng 5 2017

Gọi d=ƯCLN (n+1 ; 2n+3)

Do đó d thuộc ƯC (n+1 ; 2n+3)

=> n+1 chia hết cho d ; 2n+3 chia hết cho d

=> 2n+2 chia hết cho d ; 2n+3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> n+1 và 2n+3 là hai số nguyên tố cùng nhau

=> n+1/2n+3 là phân số tối giản với mọi số n.

27 tháng 4 2017

a) Gọi d là ƯCLN(n+1;2n+3)

=>n+1 chia hết cho d và 2n+3 chia hết cho d

=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>(2n+3)-(2n+2) chia hết cho d

hay 1 chia hết cho d

=>d=1

=> phân số \(\dfrac{n+1}{2n+3}\) tối giản với mọi số tự nhiên n

b) Gọi d là ƯCLN(4n+8;2n+3)

=>4n+8 chia hết cho d và 2n+3 chia hết cho d

=>2(n+3) chia hết cho d hay 4n+6 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

hay 2 chia hết cho d

Do 2n+3=2(n+1)+1 không chia hết cho 2=>d phải là số lẻ và 2 chia hết cho d =>d=1

=> phân số \(\dfrac{2n+3}{4n+8}\) tối giản với mọi số tự nhiên n

27 tháng 4 2017

Bạn vào đây nhé: Câu hỏi của Nguyễn Đinh Huyền Mai - Toán lớp 6 | Học trực tuyến

28 tháng 4 2017

Gọi n là ƯC ( n + 1 ; 2n + 1 ) và n E N*

Suy ra n + 1 chia hết cho n

        2n + 1 chia hết cho n

Vậy 2n + 2 chia hết cho n

      2n + 1 chia hết cho n

nên (2n + 2) - (2n + 1) chia hết cho n

   =  2n + 2 - 2n - 1 chia hết cho n 

   =           1        chia hết cho n suy ra n = 1

Vậy n + 1 và 2n + 1 là nguyên tố cùng nhau

Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản

       

28 tháng 4 2017

Gọi d là UCLN(n+1 ; 2n+1 )

\(\Rightarrow n+1⋮d\)và \(2n+1⋮d\)

\(\Rightarrow2.\left(n+1\right)⋮d\)hay \(2n+2⋮d\)

\(\Rightarrow2n+2-\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\)

Vậy d = 1/-1 \(\Rightarrow dpcm\)

Ai thấy đúng thì ủng hộ

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮a\\2n+5⋮a\end{matrix}\right.\Leftrightarrow a=1\)

Vậy: 2n+5/n+3 là một phân số tối giản

9 tháng 12 2021

gọi d là ước chung của n+3 và 2n+5 với d∈N

⇒n+3⋮d và 2n+5⋮d

⇒(n+3)-(2n+5)⋮d ⇒2(n+3)-(2n+5)⋮d⇔1⋮d⇒d=1∈N

⇒ƯC(n+3 và 2n+5)=1

⇒ƯCLN(n+3 và 2n+5)=1⇒\(\dfrac{2n+5}{n+3}\),(n∈N) là phân số tối giản

14 tháng 7 2015

Gọi ƯCLN(n+1; 2n+3) là d. Ta có:

n+1 chia hết cho d => 2n+2 chia hết cho d

2n+3 chia hết cho d

=> 2n+3-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)

26 tháng 6 2018

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

16 tháng 2 2019

Gọi \(d=UCLN\left(n+1,2n+3\right)\)              \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d

                1              \(⋮\)d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

16 tháng 2 2019

Gọi d là ƯCLN\((n+1,2n+3)\)

Ta có : \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2(n+1)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\((2n+3)-(2n+2)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(\frac{n+1}{2n+3}\)là phân số tối giản\((đpcm)\)

25 tháng 1 2015

 ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1

Gọi ƯCLN(n,2n+3) là :d


suy ra:  n chia hết cho d và 2n+3 chia hết cho d

suy ra :    (2n+3) - 2n chia hết cho d

                 3 chia hết cho d 

  suy ra:  d thuộc Ư(3) =( 3,1)

 ta có: 2n +3 chia hết cho 3

            2n chia hết cho 3

           mà (n,3)=1 nên  n chia hết cho 3

vậy khi n=3k thì (n,2n+3) = 3    (k thuộc N) 

   suy ra : n ko bằng 3k thì (n,2n+3)=1

vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản 

   

8 tháng 2 2015

a/ n rút gọn đi còn 1/2+3 bằng 1/5

b/rút gọn 3a hết còn 1/1 vậy bằng 1