K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Ta có:

\(\overline{aaaaaa}=a.111111=7a.15873⋮7\)

Do đó:\(\overline{aaaaaa}⋮7\left(dpcm\right)\)

2 tháng 1 2020

Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)

29 tháng 11 2024

Câu hỏi này là băng 2.

 

7 tháng 8 2023

a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)

b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)

      Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)

c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1

+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

 ⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên

7 tháng 8 2023

a) \(\overline{aaa}=100a+10a+a=111a\)

mà \(111=37.3⋮37\)

\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)

\(\Rightarrow dpcm\)

 

TL :

aaa = a . 111

Ta có : 

111 = 3 . 37

=> aaa = a . 111 = a . 3 . 37

=> aaa luôn chi hết cho 37

Vậy số có dạng aaa luôn chia hết cho 37

15 tháng 7 2017

abc abc=abc.1000+abc=abc.(1000+1) 

=abc.1001=abc.91.11 

vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11 

15 tháng 7 2017

abc x abc = abc x 1000 + abc = abc x ( 1000 + 1 )

= abc x 1001 = abc 91 11

Vì 11 chia hết cho 11 nên abc x 91 x 11 chia hết cho 11.

23 tháng 1 2018

1. aaa = a . 111 = a . 3 . 37 \(⋮\)37

Vậy số có dạng aaa luôn chia hết cho 37

~~~~ có ai xem và cổ vũ cho U ( 23 ) việt Nam không ~~~~

23 tháng 1 2018

sai đề bài phần 1) bạn ơi 

13 tháng 5 2019

Ta có: ab− ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b) chia hết cho 9 (điều phải chứng minh).

19 tháng 5 2019

Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)

Ta có a = 7m + r, b = 7n + r (m, n ∈ N)

Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)

Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7