Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s= 1 -3 +32 - 33 -...+32014-32015
=(1-3+32)-(33-34+35)-...-(32013-32014+32015)
=(1-3+32)-33(1-3+32)-...-32013(1-3+32)
=7-33 *7-...-32013*7
=7*(1-33-...-32013)
có 7 chia hết cho 7,(1-33-...-32013) là số nguyên
=> s chia hết cho 7 (đpcm)
73=343 đồng dư với 1(mod 9)
=>(73)6=718 đồng dư với 1(mod 9)
=>718=9k+1
=>B=9k+1+18.3-1=9k+18.3=9(k+2.3) chia hết cho 9
=>đpcm
\(S=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{2020}.\left(5+5^2\right)\\ =30+30.5^2+...+30.5^{2020}\\ =30.\left(1+5^2+...+5^{2020}\right)⋮30\)
\(S=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2000}\left(5+5^2\right)\)
\(\Rightarrow S=20+5^2.20+...+5^{2000}.20\)
\(\Rightarrow S=20\left(1+5^2+...+5^{2000}\right)⋮20\)
\(\Rightarrow dpcm\)
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!