K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

\(x^2+x+3\)

\(=x^2+x+\frac{1}{4}+\frac{11}{4}\)

\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{11}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{11}{4}\)

\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{11}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy ...

6 tháng 8 2018

\(x^2+x+3=x^2+\frac{1}{2}.2.x+\frac{1}{4}+\frac{11}{4}\)

                       \(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)                                          .......................... Đúng 100% ...........................

   \(\frac{11}{4}>0\)                                                   ................................. Tk cho mình nha! ...................................

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)

\(\Rightarrow x^2+x+3>0\)

Hay \(x^2+x+3\)luôn dương với mọi x

26 tháng 7 2017

ta co A=4x^2-2x+3

A=4x^2-2x+1+2

a=

1 tháng 12 2019

\(A=x^2+10y^2+2xy-6y+5\)

\(A=x^2+2xy+y^2+9y^2-6y+1+4\)

\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)

Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)

=> A luôn dương với mọi x ; y

1 tháng 12 2019

\(B=x-x^2-1\)

\(B=-\left(x^2-x+1\right)\)

\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)

=> B luôn âm với mọi x

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

13 tháng 10 2015

A= 4x2-4x+3 = 4x2-4x+1+2 = (4x2-4x+1)+2 = (2x-1)2 +2 

            Vì  (2x-1)>=0 với mọi x nên (2x-1)2 +2 >0 với mọi x 

B= x2+x+1 =  x2+x+1/4 +3/4 = (x2+x+1/4) +3/4 = (x+1/2)2 +3/4

           Vì  (x+1/2)>=0 với mọi x nên  (x+1/2)2 +3/4 > 0 với mọi x 

C=2x2-x+2 = 2(x2-1/2x+1) = 2(x2-1/2x + 1/16 +15/16)  = 2[(x-1/4)2 + 15/16] = 2(x-1/4)2 + 15/8

               Vì  2(x-1/4)2  >=0 với mọi x nên  2(x-1/4)2 + 15/8 > 0 với mọi x 

 

10 tháng 10 2015

a. 

= (2x)2.2x+1 +2

=(2x+1)2+2(luôn dương)

b. =x2 +2x.1/2 +1/4+3/4

    = (x+1/2)2+3/4 (luôn dương)

c. 2C=(2x)2-4x1/2 +1/4+7/4

       = (2x-1/2)2+7/4

r bạn suy ra C luôn dương :>

13 tháng 10 2017

x2 -x + 2 = x2 - 2x.\(\frac{1}{2}\) + \(\frac{1}{4}\) +\(\frac{7}{4}\)

              = (x -\(\frac{1}{2}\) )2  + \(\frac{7}{4}\)

13 tháng 10 2017

Mọi người giúp mình với 🙂🙂🙂

1 tháng 11 2018

\(a,\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right)\)

\(x^2+2x+1+2x^2-4x=3\left(x^2+5x+4\right)\)

\(3x^2-2x+1=3x^2+15x+12\)

\(\Rightarrow3x^2-2x+1-3x^2-15x-12=0\)

\(\Rightarrow-17x=11\)

\(\Rightarrow x=-\frac{11}{17}\)

\(b,M=x^2+12x+50\)

\(M=x^2+2.6.x+6^2+14\)

\(M=\left(x+6\right)^2+14\ge14>0\)

=> M luôn dương 

1 tháng 11 2018

\(\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right).\)

\(\Leftrightarrow x^2+2x+1+2x^2-4x=3.(x^2+x+4x+4)\)

\(\Leftrightarrow x^2-2x+2x^2+1=3x^2+15x+12\)

\(\left(x^2-3x^2+2x^2\right)=\left(15x+2x\right)+12-1\)

\(17x+11=0\)

\(\Leftrightarrow x=\frac{-11}{17}\)