Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+10y^2+2xy-6y+5\)
\(A=x^2+2xy+y^2+9y^2-6y+1+4\)
\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)
=> A luôn dương với mọi x ; y
\(B=x-x^2-1\)
\(B=-\left(x^2-x+1\right)\)
\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)
=> B luôn âm với mọi x
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
A= 4x2-4x+3 = 4x2-4x+1+2 = (4x2-4x+1)+2 = (2x-1)2 +2
Vì (2x-1)2 >=0 với mọi x nên (2x-1)2 +2 >0 với mọi x
B= x2+x+1 = x2+x+1/4 +3/4 = (x2+x+1/4) +3/4 = (x+1/2)2 +3/4
Vì (x+1/2)2 >=0 với mọi x nên (x+1/2)2 +3/4 > 0 với mọi x
C=2x2-x+2 = 2(x2-1/2x+1) = 2(x2-1/2x + 1/16 +15/16) = 2[(x-1/4)2 + 15/16] = 2(x-1/4)2 + 15/8
Vì 2(x-1/4)2 >=0 với mọi x nên 2(x-1/4)2 + 15/8 > 0 với mọi x
a.
= (2x)2 2.2x+1 +2
=(2x+1)2+2(luôn dương)
b. =x2 +2x.1/2 +1/4+3/4
= (x+1/2)2+3/4 (luôn dương)
c. 2C=(2x)2-4x1/2 +1/4+7/4
= (2x-1/2)2+7/4
r bạn suy ra C luôn dương :>
x2 -x + 2 = x2 - 2x.\(\frac{1}{2}\) + \(\frac{1}{4}\) +\(\frac{7}{4}\)
= (x -\(\frac{1}{2}\) )2 + \(\frac{7}{4}\)
\(a,\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right)\)
\(x^2+2x+1+2x^2-4x=3\left(x^2+5x+4\right)\)
\(3x^2-2x+1=3x^2+15x+12\)
\(\Rightarrow3x^2-2x+1-3x^2-15x-12=0\)
\(\Rightarrow-17x=11\)
\(\Rightarrow x=-\frac{11}{17}\)
\(b,M=x^2+12x+50\)
\(M=x^2+2.6.x+6^2+14\)
\(M=\left(x+6\right)^2+14\ge14>0\)
=> M luôn dương
\(\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right).\)
\(\Leftrightarrow x^2+2x+1+2x^2-4x=3.(x^2+x+4x+4)\)
\(\Leftrightarrow x^2-2x+2x^2+1=3x^2+15x+12\)
\(\left(x^2-3x^2+2x^2\right)=\left(15x+2x\right)+12-1\)
\(17x+11=0\)
\(\Leftrightarrow x=\frac{-11}{17}\)
\(x^2+x+3\)
\(=x^2+x+\frac{1}{4}+\frac{11}{4}\)
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{11}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{11}{4}\)
\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{11}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy ...
\(x^2+x+3=x^2+\frac{1}{2}.2.x+\frac{1}{4}+\frac{11}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\) .......................... Đúng 100% ...........................
\(\frac{11}{4}>0\) ................................. Tk cho mình nha! ...................................
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)
\(\Rightarrow x^2+x+3>0\)
Hay \(x^2+x+3\)luôn dương với mọi x