Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )
A = 3 . 4 + 33 . 4 + ... + 399 . 4
A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4
= \(3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
=\(40\left(1+...+3^{97}\right)\) chia hết cho 40
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3^1.\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=3^1.4+3^3.4+3^5.4+...+3^{99}.4\)
\(=4.\left(3^1+3^3+3^5+...+3^{99}\right)\)
Vậy phép tính trên chia hết cho 4
Giải:
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{99}.4\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4\)
Vậy ...
Chúc bạn học tốt!
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
a) \(2010^{100}+2010^{99}\)
\(=2010^{99}\left(2010+1\right)\)
\(=2010^{99}.2011⋮2011\left(dpcm\right)\)
b) \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}.11⋮11\left(dpcm\right)\)
c) \(4^{13}+32^5-8^8\)
\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}.5⋮5\left(dpcm\right)\)
Phần C đề thiếu
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)
Đặt A = 31 + 32 + 33 + 34 + ... + 3100
= ( 31 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
=3( 1+3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )
= 4( 3+ 33 + ... + 399 ) chia hết cho 4
=> đpcm
Gọi tổng 3+32+33+...+3100 là A
Ta có :A=3+32+33+...+3100
=(3+32)+(33+34)+...+(399+3100)
=3(1+3)+33.(1+3)+...+399.(1+3)
=3.4+33.4+...+399.4
Vì 4\(⋮\)4 nên 3.4+33.4+...+399.4\(⋮\)4
hay A \(⋮\)4
Vậy A\(⋮\)4