Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
cậu thiếu bước trung gian đó là : a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3=3.a+3.1=3.(a+1) chia hết cho 3. Vậy tổng của 3 số liên tiếp chia hết cho 3
b, gọi ba số tự nhiên liên tiếp là n, n+1, n+2 (n thuộc N)
ta có: n+(n+1)+(n+2)
=3n+3
=3(n+1) chia hết cho 3
Vì 3n chia hết cho 3, 3 chia hét cho 3
=>Tổng 3 ố tự nhiên liên tiếp chia hết cho 3
Cứ thé áp dụng cho bài a,c
Nếu e cần c sẽ cho cái bản lưu ý, sau này làm mấy bài này dễ không hà.
a) gọi 2 số tự nhiên liên tiếp là
n ; n+1
n + n + 1 = 2n + 1
vì 2n chia hết cho 2
1 không chia hết cho 2
=> 2n + 1 không chia hết cho 2
vậy tổng 2 số tự nhiên liên tiếp ko chia hết cho 2
a, Ba số tự nhiên liên tiếp là a; a+1; a+2
Tổng 3 số tự nhiên liên tiếp ấy: a+a+1+a+2= 3a+3= 3(a+1)\(⋮3\)
b, Bốn số tự nhiên liên tiếp lần lượt là b;b+1;b+2;b+3
Tổng chúng bằng: b+b+1+b+2+b+3= 4b+6 = 4(b+1) (dư 2)
=> Ko chia hết.
a, Gọi 3 số tự nhiên liên tiếp là \(a,a+1,a+2\) \(\left(a\in N\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)=a+a+1+a+2\)
\(=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrow a+\left(a+1\right)+\left(a+2\right)⋮3\)
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
b, Gọi 4 số tự nhiên liên tiếp là \(a,a+1,a+2,a+3\left(a\in N\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=a+a+1+a+2+a+3\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)=4a+6\)
Vì \(a\in N\Rightarrow4a⋮4\) mà \(6⋮̸\)4
\(\Rightarrow4a+6⋮̸\) 4 hay \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)⋮̸\)4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
a) Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2
=> a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
=> dpcm
b) Gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3
Ta có a+a+1+a+2+a+3 = 4a+6 không chia hết cho 4
=> dpcm
a) Gọi 3 số tự nhiên liên tiếp đó là : \(3n;3n+1;3n+2\) ( \(n\in N\))
Tổng 3 số tự nhiên liên tiếp đó là : \(3n+\left(3n+1\right)+\left(3n+2\right)=3n+3n+3n+1=9n+3=3.\left(n+1\right)⋮3\)
Suy ra : tổng 3 số tự nhiên liên tiếp chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b)Gọi 4 số tự nhiên liên tiếp đó là : \(4n;4n+1;4n+2;4n+3\) ( \(n\in N\))
Tổng 4 số tự nhiên liên tiếp đó là :
\(4n+\left(4n+1\right)+\left(4n+2\right)+\left(4n+3\right)=4n+4n+4n+4n+1+2+3=16n+6\)
Vì \(16⋮4\)nên \(16n⋮4\)mà 6 không chia hết cho 4 nên \(16n+6\)không chia hết cho 4
Suy ra tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Tổng 4 số tự nhiên liên tiếp đó là :
a)Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2(a∈N)
⟹a+(a+1)+(a+2)
=a+a+1+a+2
=a+a+a+1+2
=3a+3 chia hết cho 3
⟹Tổng của 3 số tự nhiên liên tiếp chia hết cho 3→điều phải chứng minh
b)Gọi 4 số tự nhiên liên tiếp là k;k+1;k+2;k+3(k∈N)
⟹k+(k+1)+(k+2)+(k+3)
=k+k+1+k+2+k+3
=k+k+k+k+1+2+3
=4k+6 không chia hết cho 4
⟹Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4→điều phải chứng minh
Chúc bạn học giỏi và gặp nhiều may mắn trong cuộc sống
3 số tự nhiên liên tiếp là n , n+1. n+2
n+n+1+n+3 = 3n+3 chia hết cho 3
4 số tự nhiên liêp tiếp là n , n+1 , n+2 , n+ n
n+n+1+n+2+n+3 = 4n + 5 ko chia hết cho 4
ok học tốt nha man
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
a) Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3; 1 số chia 3 dư 1 và 1 số chia 3 dư 2.
Gọi chúng là 3k ; 3h + 1 ; 3n + 2
Tổng chúng là :
3k + 3h + 1 + 3n + 2
= 3k + 3h + 3n +3
=3 ( k + h + n + 1 ) chia hết cho 3.
b) Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4; 1 số chia 4 dư 1; 1 số chia 4 dư 2 và 1 ố chia 4 dư 3.
Gọi chúng là 4k ; 4h + 1 ; 4n + 2 ; 4m + 3
Tổng chúng là :
4k + 4h + 1 + 4n + 2 + 4m + 3
=4k+4h +4n + 4m + 4 + 2
= 4 ( k + h + n + m + 1 ) + 2 chia 4 dư 2
a) 1+2+3=6 chia hết cho 3 nè hoặc là 3+4+5=12
b)1+2+3+4=10 ko chia hết cho 4 hoặc 3+4+5+6=18