Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x có chữ số tận cùng là số lẻ
Suy ra 3100 có chữ số tận cùng là số lẻ
19990 có chữ số tận cùng là số lẻ
Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn
Vậy 3100 +19990 chia hết cho 2
3x có chữ số tận cùng là số lẻ
Suy ra 3100 có chữ số tận cùng là số lẻ
19990 có chữ số tận cùng là số lẻ
Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn
Vậy 3100 +19990 chia hết cho 2
mk nghĩ là thê này nè :
a / Ta co : \(3^{100}=\left(3^4\right)^{25}=\left(....1\right)^{25}=....1\) (1)
\(19^{990}=19^{989}.19=\left(....9\right).19=....1\) (2)
Từ (1) và (2) \(=>\left(3^{100}+19^{990}\right)=\left(....1\right)+\left(....1\right)=....2\)
\(=>\)\(\left(3^{100}+19^{990}\right)⋮2\) (chữ sô tận cùng của tổng trên là sô chẵn nên tổng trên chia hêt cho 2 ) (đpcm)
b / Gọi 4 sô tự nhiên liên tiêp là a, a+1, a+2, a+3
Theo bài ra ta co :
\(a+a+1+a+2+a+3=\left(a+a+a+a\right)+\left(1+2+3\right)=4a+6\)
\(4a⋮4\)(vì 4\(⋮\)4) (1)
Mà 6\(⋮̸\)4 (2)
Từ (1) và (2) => a + a + 1 + a + 2 + a + 3
Hay tổng của 4 sô tự nhiên liên tiêp không chia hêt cho 4 (đpcm)
tick cho mk nha
Vì 3 và 19 là các số lẻ lên 3^x và 19^y luôn lẻ .
=> 3^100 và 19^900 đều là số lẻ .
Mà số lẻ + số lẻ = số chẵn . Số chẵn lại chia hết cho 2
=> 3^100 + 19^900 chia hết cho 2
Ta có : \(3^{100}=3^{4.25}=\left(3^4\right)^{25}\)
Mà \(3^4\) có chữ số tận cùng là 1 nên \(\left(3^4\right)^{25}\)có chữ số tận cùng là 1
\(19^{990}\) có chữ số tận cùng là 1
\(\Rightarrow3^{100}+19^{990}\) có chữ số tận cùng là 2
\(\Rightarrow\left(3^{100}+19^{990}\right)⋮2\)