K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

Gọi ( \(x^',y^',z^'\)) là 1 nghiệm thoả mãn pt với \(z^'\)là số nhỏ nhất.

Không mất tính tổng quát, giả sử \(x^'\le y^'\le z^'\)

Mặt khác xét pt bậc 2 ẩn z :

\(z^2-\left(7x'y^'-2x^'-2y^'\right)z+\left(z^'+y^'\right)^2=0\)

Hiển nhiên pt này có 1 nghiệm z'

Theo định lý Viete thì nghiệm còn lại của nó là \(\frac{\left(x^'+y^'\right)^2}{z'}\inℤ\)

Như vậy \(\left(x',y',\frac{\left(x'+y'\right)^2}{z^'}\right)\)cũng là bộ số thoả mãn pt

Nếu giả sử x'+y' < z' \(\Rightarrow\frac{\left(x'+y'\right)^2}{z'}< z'\)vô lý vì ( x',y',z') cũng là 1 bộ số thoả mãn pt và vì tính nhỏ nhất của z'

Do đó ta phải có \(z'\le x'+y'\). Khai triển pt ban đầu và chia 2 vế của nó cho y'z'x' ta được:

\(7\le\frac{x'}{y'z'}+\frac{y'}{x'z'}+\frac{z'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}\)

\(\le\frac{1}{z'}+\frac{1}{x'}+\frac{x'+y'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}=\frac{4}{x'}+\frac{3}{y'}+\frac{2}{z'}\le\frac{10}{x'}\)

\(\Rightarrow x'=1\)

8 tháng 1 2021

Khi đó \(y'\le z'\le y'+1\)\(\Rightarrow\orbr{\begin{cases}z'=y\\z'=y'+1\end{cases}}\)

+ Nếu z'=y' thì ta có pt \(\left(1+2z'\right)^2=7z'^2\Leftrightarrow3z'^2-4z'-1=0\)\(\Leftrightarrow z'=\frac{2\pm\sqrt{7}}{3}\)(loại)

+ Nếu x'=y'+1 thì ta có pt \(\left(2+2z'\right)^2=7z'\left(z'+1\right)\Leftrightarrow3z'^2-z'-4=0\Leftrightarrow z\in\left\{-1;\frac{4}{3}\right\}\)(loại)

Vậy pt đã cho không có nghiệm nguyên ( đpcm)

NV
14 tháng 3 2020

\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(xz\right)^2}{zxy^2\left(x+z\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)

\(VT=\frac{2\left(yz\right)^2}{xy+zx}+\frac{2\left(xz\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\ge\frac{2\left(yz+xz+xy\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)

6 tháng 12 2017

1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:

Từ đây ta xét với \(x>6\)thì

\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm.

Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.

6 tháng 12 2017

2/ \(3^x+1=\left(y+1\right)^2\)

\(\Leftrightarrow3^x=y\left(y+2\right)\)

Với \(y=1\)

\(\Rightarrow x=1\)

Với \(y>1\)

Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)

Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)

Vậy \(x=1,y=1\)

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

10 tháng 11 2018

\(\left(1+x\right)\left(y+z\right)=xyz+2\)

\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)

\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)

\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)

\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)

Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)

Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) ) 

Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) ) 

Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) ) 

\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)

Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau 

Giải r nhưng quên link, có j e ib gửi link khác cho :)) 

Chúc a học tốt ~ 

10 tháng 11 2018

cảm ơn e nhé, alibaba nguyễn cx giúp anh r