Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt số dư là a
Ta có: 5k + a - 5g - a = 5(k-g) chia hết cho 5
gọi hai số đó là a,b
vì a và b chia cho 5 có cùng số dư
=> a = 5k +r , b= 5t +r ( r < 5)
=> a -b = ( 5k+r ) - ( 5t +r )
= 5k +r - 5t - r
= 5k - 5t
= 5 ( k - t) chia hết cho 5
=> a- b chia hết cho 5
=> đpcm
Mình thì đc học cách này
Gọi 2 số đã cho là a và b
Ta có : \(\frac{a⋮5}{b⋮5}\hept{\begin{cases}\left(a-b\right)⋮5\\\left(a+b\right)⋮5\end{cases}}\)
Vậy a chia hết cho 5 , b chia hết cho 5 thì ( a - b ) chia hết cho 5
Bạn có thể dùng kí hiệu nhé
Ta có:abba=1001a+110b=11(91a+10b) chia hết cho 11
Vậy 11 là ước của số có dạng abba
Gọi 2 số chia 7 có cùng số dư là 7a+c và 7b+c(c là số dư khi chia cho 7 và c<7)
=>7a+c-7b-c=7a-7b=(7(a-b) chia hết cho 7
Vậy hiệu 2 số chia 7 có cùng số dư thì chia hết cho 7
ta có abbc=1000a+100b+10b+a=(1000a+a)+(100b+10b)=a(1000+1)+b(100+10)
=1001a+110b
ta có 1001 chia hết cho 11 =>1001a chia hết cho 11
110 cia hết cho 11=>110b chia hết cho 11
suy ra 1001a+110b chia hết cho 11 hay abba chia hết cho 11
hay 11 là ước của số có dạng abba.
gọi hai số đó là s và y
cho s:7= a+b (với a;b thuộc Z và a chia hết cho 7)
Và y:7=c+b (với c thuộc Z và c chia hết cho 7)
khi đó s-y= (a+b)-(c+b)=a+b-c-b=a-c
Mà a chia hết cho 7 và c chia hết cho 7
Vậy a-c chia hết cho 7
Vậy s-y chia hết cho 7
gọi số thứ nhất là a, số thứ hai là b, thương của số thứ nhất với 7 là c, thương của số thứ hai với 7 là d, số dư của hai số đó khi chia cho 7 là k.
giả sử a > b => c>d .
ta có : a =7c+k;b=7d+k=>a-b=(7c+k)-(7d+k)=7c-7d=7(c-d) mà c>d; c,d đều là số nguyên Nên: 7(c-d) luôn chia hết cho 7
=>a-b chia hết cho 7 (đpcm)
gọi a và b là hai số có cùng số dư là r khi chia cho 7 (giả sử a > hoặc bằng b)
ta có:a=7m+r,b=7n+r(m,m thuộc N)
khi đó a-b=(7m+r)-(7n-r)=7m-7n chia hết cho 7
Gọi 2 số đó là a và b
Do a và b có cùng số dư khi chia cho 5
=> a = 5.m + r; b = 5.n + r (r là số dư; r < m; r < n)
Ta có: a - b = (5.m + r) - (5.n + r)
= 5.m + r - 5.n - r
= 5.m - 5.n
= 5.(m - n) chia hết cho 5
Chứng tỏ 2 số chia cho 5 có cùng số dư thì hiệu của chúng chia hết cho 5