Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
Gọi 5 số tự nhiên liên tiếp đó là a, a+1, a+2, a+3, a+4.
Nếu \(a=5k\Rightarrow a⋮5\)
Nếu \(a=5k+1\Rightarrow a+4=5k+1+4=5k+5⋮5\)
\(\Rightarrow a+4⋮5\)
Nếu \(a=5k+2\Rightarrow a+3=5k+2+3=5k+5⋮5\)
\(\Rightarrow a+3⋮5\)
Nếu \(a=5k+3\Rightarrow a+2=5k+3+2=5k+5⋮5\)
\(\Rightarrow a+2⋮5\)
Nếu \(a=5k+4\Rightarrow a+1=5k+4+1=5k+5⋮5\)
\(\Rightarrow a+1⋮5\)
Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.
xét 2 trường hợp:
+ TH1: n chẵn, tức n = 2k.
n.(n+5)=2k.(2k+5) chia hết cho 2.
+ TH2: n lẻ, tức n = 2k+1
n.(n+5)=(2k+1).(2k+6)= (2k+1).2.(k+3) chia hết cho 2.
Vậy với mọi n thì n.(n+5) chia hết cho 2
Với n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Với n = 2k + 1
=> n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
TA CÓ
+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh
+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6
mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2
suy ra n(n+5) chia hết cho 2
Vậy n(n+5) luôn chia hết cho 2 (đpcm)
Nếu n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
Gọi chung các số tự nhiên có 3 chữ số khác nhau là aaa.
Ta có:
aaa = a . 111 = a . ( 3 . 37) = 3a . 37 chia hết cho 37.
Vậy mọi số tự nhiên có 3chữ số giống nhau đều chia hết cho 37
Gọi 3 chữ số tự nhiên giống nhau là aaa
Ta có: aaa=a.111=a.373 chia hết cho 37
Suy ra: mọi số tự nhiên có 3 chữ số giống nhau đều chia hất cho 37