K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

 

\(\frac{M}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)

\(\frac{2M}{3}=M-\frac{M}{3}=\frac{1}{3}-\frac{1}{3^{100}}\)

\(2M=1-\frac{1}{3^{99}}\Rightarrow M=\frac{1}{2}-\frac{1}{2.3^{99}}<\frac{1}{2}\) (dpcm)

14 tháng 11 2015

M=1/3+1/3^2+...+1/3^99

3M=1+1/3+1/3^2+...+1/3^98

3M+1/3^99=1+1/3+...+1/3^99=1+M

3M-M=1-1/3^99

2M=1-1/3^99

M=(1-1/3^99)/2 

Vì 1-1/3^99 <1 nên (1-1/3^99)/2<1/2

Vậy M<1/2

8 tháng 6 2016

1/2!= 1- 1/2 
1/3! = 1/2.3= 1/2 - 1/3 
1/4! = 1/2.3.4< 1/3.4 =1/3 -1/4 
.... 
1/100! = 1/...99.100 <1/99-1/100 
cộng vế với vế ta được điều phải chứng minh

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn

13 tháng 10 2019

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)

\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)

Vậy \(A< \frac{1}{2}.\)

Chúc bạn học tốt!

17 tháng 9 2016

Ta có:

\(M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2M=1-\frac{1}{3^{98}}\)

\(\Rightarrow M=\left(1-\frac{1}{3^{98}}\right):2\)

\(\Rightarrow M=\frac{1}{2}-\frac{1}{3^{98}.2}< \frac{1}{2}\)

\(\Rightarrow M< \frac{1}{2}\left(đpcm\right)\)

17 tháng 9 2016

cảm ơn bạn nha