K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chtt điNguyễn Thi Hạnh

28 tháng 12 2015

dễ, gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3 (k thuộc N)

gọi d là UCLN(2k+1;2k+3) suy ra:2k+1chia hết cho d;2k+3 chia hết cho d suy ra : (2k+3)-(2k+1) chia hết cho d suy ra: 2 chia hết cho d suy ra d thuộc tập hợp Ư(2) suy ra d thuộc {1;2}

nhưng vì 2k+1;2k+3 là số lẻ nên không chia hết cho 2 suy ra d=1

VẬY:HAI SỐ LẺ LIÊN TIẾP NGUYÊN TỐ CÙNG NHAU

 

6 tháng 12 2021

Tham khảo

Câu hỏi của Clean Master - Toán lớp 6 - Học trực tuyến OLM

6 tháng 12 2021

Tham khảo

https://olm.vn/hoi-dap/detail/6225335775.html

23 tháng 4 2017

Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3 và ƯCLN(2k+1;2k+3)=d

\(\Rightarrow\)2k+1 chia hết cho d và 2k+3 chia hết cho d

\(\Rightarrow\)(2k+1) - (2k+3) chia hết cho d

\(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)ƯCLN(2k+1;2k+3) thuộc 1 hoặc 2

Vì 2k+1 và 2k+3 là số lẻ nên d là số lẻ. \(\Rightarrow d=1\)

\(\Rightarrow\)ƯCLN(2k+1;2k+3)=1

Vậy 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

23 tháng 3 2017

gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

đặt(2k+1,2k+3)=d 

ta phải c/m d=1

thật vậy : 2k+1chia hết cho d

2k+3 chia hết cho d

suy ra(2k+3)-(2k+1)chia hết cho d

suy ra:2 chia hết cho d

suy ra: d=1hoặc 2 

nhưng d khác 2 vì d là ước của số lẻ 

suy ra:d=1

23 tháng 3 2017

=1 nha bn

29 tháng 11 2016

ban chi can tra loi:biet roi thi chung minh lam gi cho met nguoi

29 tháng 11 2016

Gọi 2 số lẻ liên tiếp là n+1 và n+3

Đặt ƯCLN(n+1,n+3) là d

=> n+1 chia hết cho d 

     n+3 chia hết cho d

=> (n+3) - (n+1) chia hết cho d

=> n+3 - n - 1 chia hết cho d

=> 2 chia hết cho d

=> d \(\in\){1;2}

Mà n+1 và n+3 là số lẻ nên d \(\ne\)2

=> d = 1

=> ƯCLN(n+1,n+3) = 1 

=> n+1 và n+3 là 2 số nguyên tố cùng nhau

Vậy 2 số lẻ liên tiếp 2 số nguyên tố cùng nhau

30 tháng 7 2018

Chứng tỏ rằng 2 số lẻ liên tiếp bất kì nguyên tố cùng nhau

  gọi 2 số lẻ đó là 2k+1 và 2k+3 
gọi ước chung lớn nhất của 2 số lẻ đó là p 
=>2k+1 chia hết cho p; 2k+3 chia hết cho p 
=>2k+3-2k-1=2 chia hết cho p 
=>p=1;2 
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ

26 tháng 11 2020

chứng minh rằng 

a) hai số lẻ liên tiếp 

b) 2N+5 VÀ 3n+7