K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Gọi hai góc kề bù lần lượt là a và b

Ta có: a+b=180độ

=>1/2a+1/2b = 1/2(a+b) = 90độ

vẽ hình ra là thấy!!!

12 tháng 4 2017

Gọi xOy và yOz là 2 góc kề bù, Ot là p/g xOy; Ot' là p/g yOz

Ta có: yOt = 1/2 xOy (vì Ot là tia p/g xOy) (1)

          yOt' = 1/2 yOz (vì Ot' là tia p/g yOz) (2)

          xOy + yOz = 180 độ ( vì 2 góc kề bù)

Từ (1) và (2) suy ra yOt + yOt' = 1/2(xOy + yOz)

                                             = 1/2.180

                                             = 90 độ

suy ra tOt' = 90 độ

Vậy 2 tia p/g của 2 góc kề bù vuông góc với nhau

Nhớ nha !!!!

25 tháng 3 2018

Bạn tự vẽ hình ra, máy trục trặc nên mình không vẽ được,

Gọi hai góc kề bù là x , y.

Ta có: \(x+y=90^o+90^o=180\)

\(\Rightarrow\frac{1}{2}.x+\frac{1}{2}.y=\frac{1}{2}\left(x+y\right)\)

Mà \(x+y=180^o\)

Vậy \(\frac{1}{2}\left(x+y\right)=\frac{1}{2}.180^o=90^{o^{\left(đpcm\right)}}\)

24 tháng 3 2018

Trả lời

Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

~Mik ko biết đúng không?~

12 tháng 3 2019

Gọi \(\widehat{xOz}\), \(\widehat{zOy}\) là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của \(\widehat{xOz}\) , \(\widehat{zOy}\)
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy, nên:
 \(\hept{\begin{cases}\widehat{uOz}=\widehat{xOu}=\frac{\widehat{xOz}}{2}\\\widehat{zOv}=\widehat{yOv}=\frac{\widehat{zOy}}{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\widehat{uOz}=\widehat{xOz}\\2\widehat{zOv}=\widehat{zOy}\end{cases}}\)
Ta lại có:
\(\widehat{xOz}+\widehat{zOy}=180^0\) ( kề bù )
\(\Rightarrow2\widehat{uOz}+2\widehat{zOv}=180^0\)
\(\Rightarrow2\left(\widehat{uOz}+\widehat{zOv}\right)=180^0\)

\(\Rightarrow\left(\widehat{uOz}+\widehat{zOv}\right)=180^0\div2\)

\(\Rightarrow\left(\widehat{uOz}+\widehat{zOv}\right)=90^0\)
\(\Rightarrow\widehat{uOv}=90^0\) (vì 2 góc uOz, góc zOv kề nhau)
\(\Rightarrow\) Tia Ou vuông góc tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

A O E B C D

ta có góc AOE+EOC=180

MÀ BOC=AOB, OED=DOC

vậy BOC+DOE=\(\frac{AOE+EOC}{2}=\frac{180}{2}=90\)

13 tháng 7 2017

 * Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 

13 tháng 7 2017

xet hai goc ke bu xOy va yOz 

tia phan giac goc xOy la On    ; tia phan giac goc yOz la Om

theo de bai ta co goc nOy = 1/2 xOy 

                               mOy = 1/2 yOz

suy ra mOn = nOy + mOy = 1/2 (xOy + yOz )=1/2.180=90(DPCM!)

3 tháng 3 2017

(Hình bạn tự vẽ nha)

a. Ta có: 

\(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}=135^0-90^0=45^0\)

\(\widehat{DOC}=\frac{1}{2}\widehat{AOC}=\frac{1}{2}.90^0=45^0\)

Mà \(\widehat{BOD}=\widehat{BOC}+\widehat{DOC}\)

\(\Rightarrow\widehat{BOD}=45^0+45^0=90^0\)

Nên góc BOD là góc vuông.

b. Ta có: \(\widehat{BOD}=\widehat{DOC}=\frac{1}{2}.\widehat{BOD}=45^0\)

=> OC là tia phân giác của góc BOD

3 tháng 3 2017

Bạn làm ơn vẽ hộ mình cái hình đc ko

2 tháng 5 2020

Fzduciug

1 tháng 8 2019
Cho mik sửa tí Cái phần b ý là chứng tỏ góc tOm là góc vuông nhé ko phải là góc tù là góc vuông đâu
9 tháng 2 2016

Ta có

Hai góc \(\alpha\) và \(\beta\) là 2 góc kề bù => \(\alpha+\beta=180^o\)

=> \(\frac{1}{2}\alpha+\frac{1}{2}\beta=\frac{1}{2}\left(\alpha+\beta\right)\)

mà \(\alpha+\beta\) = 180o

nên \(\frac{1}{2}\alpha+\frac{1}{2}\beta=\frac{1}{2}.180^o=90^o\)

Vậy, góc tạo bởi 2 tia phân giác của 2 góc kề bù là góc vuông