K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

y=mx+2x-m+3=m(x-1)+2x+3

ĐIểm mà d luôn đi qua là:

x-1=0 và y=2x+3

=>x=1 và y=2+3=5

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)

29 tháng 10 2021

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà \(\left(d\right)\) luôn đi qua

\(\Leftrightarrow y_0=\left(1+m\right)x_0-2m+4=x_0+mx_0-2m+4\\ \Leftrightarrow m\left(x_0-2\right)+\left(x_0-y_0+4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=2\\2-y_0+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=6\end{matrix}\right.\)

Vậy \(\left(d\right)\) luôn đi qua \(A\left(2;6\right)\) cố định với mọi m

29 tháng 9 2022

???

4 tháng 10 2019

Giả sử ( x 0 ; y 0  ) là điểm cố định mà đường thẳng mx + 3 + (3m – 1)y = 0 luôn đi qua.

Ta có:

m x 0  + 3 + (3m - 1)  y 0  = 0 với mọi m

⇔ m x 0  + 3 + 3m y 0  - y 0  = 0 với mọi m

⇔ m( x 0  + 3 y 0 ) + 3 - y 0 = 0 với mọi m

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà đường thẳng luôn đi qua là (-9: 3)

NV
15 tháng 12 2020

Giả sử điểm cố định mà (d) luôn đi qua có tọa độ \(M\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m, ta luôn có:

\(y_0=\left(2m+1\right)x_0+m-2\)

\(\Leftrightarrow m\left(2x_0+1\right)+x_0-y_0-2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\x_0-y_0-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy với mọi m thì (d) luôn đi qua điểm cố định có tọa độ \(\left(-\dfrac{1}{2};-\dfrac{5}{2}\right)\)

13 tháng 11 2023

a:

Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)

Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:

\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)

=>-3=-3(đúng)

vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua

b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)

\(=2mx+x+m-2\)

\(=m\left(2x+1\right)+x-2\)

Điểm mà (d) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)