K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

cũng đơn giản thôi

\(x^6\ge0\Leftrightarrow2x^6\ge0\Leftrightarrow P\left(x\right)=2x^6+7\ge7>0\) => đa thức P(x) vô nghiệm

20 tháng 5 2015

x^4-2x^2+6

=x^4 - x^2 - x^2 +1 +5

=x^2(x^2-1)-(x^2-1) +5

=(x^2-1)(x^2-1) +5

=(x^2-1)^2 + 5\(\ge\)5 hay \(\ne\)0

Vậy x^4- 2x^2 +6 vô nghiệm

thiếu đề rồi bạn ơi

3 tháng 8 2018

\(2x^2+8x+17=2.\left(x^2+2.x.2+2^2\right)+9=2.\left(x+2\right)^2+9\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow2.\left(x+2\right)^2+9\ge9\forall x\)

\(\Rightarrow2x^2+8x+17>0\forall x\)

\(\Rightarrow\)đa thức \(2x^2+8x+17\)vô nghiệm

                                                    đpcm

\(-x^2+4x-6=-\left(x^2+2.x.2+2^2\right)-2=-\left(x+2\right)^2-2\)

Ta có:\(\left(x+2\right)^2\ge0\forall x\)

 \(\Rightarrow-\left(x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+2\right)^2-2\le-2\forall x\)

\(\Rightarrow-\left(x+2\right)^2-2< 0\forall x\)

\(\Rightarrow\)đa thức \(-x^2+4x-6\)vô nghiệm

                                             đpcm

Tham khảo nhé~

21 tháng 4 2017

a) 4x2+4x+2

=4x2+2x+2x+2

=2x.(2x+1)+2x+1+1

=2x.(2x+1)+(2x+1)+1

=(2x+1)2+1

Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm

b) x2+x+1

\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm

Phần c để tớ nghĩ đã

mình không biết

1 tháng 5 2017

a) Ta có \(x^2+2x+2=\left(x^2+2x+1\right)\)\(+1=\left(x+1\right)^2+1\)Ma \(\left(x+1\right)^2\ge0\forall x\)

Nen \(\left(x+1\right)^2+1>0\). Vậy đa thức trên vô nghiệm

b) \(-x^2+2x-3=\)\(-\left(x^2-2x+1\right)-2\)\(=-\left(x-1\right)^2-2\)

Ma \(-\left(x-1\right)^2\le0\forall x\)Nen \(-\left(x-1\right)^2-2< 0\)

Vậy đa thức trên vô nghiệm

Ta có x\(^6\)\(\ge\)0 với mọi x

         -3x\(^6\)\(\le\)0 với mọi x

nên -3x\(^6\)-2022 \(\le\)0 với mọi x 

Vậy đa thức -3x\(^6\)-2022 vô nghiệm

9 tháng 4 2019

Vì \(2x^2\ge0\forall x\)

\(\Rightarrow2x^2+1\ge1\forall x\)

Vậy đa thức A(x) vô nghiệm

ta có A(x)=2x2 + 1 

vì: 2x2 lớn hơn hoặc bằng 0

     1 lớn hơn 0

suy ra: 2x2+1 lớn hơn 0

vậy đa thức A(x) không có nghiệm

20 tháng 5 2021

Cho A(x) = 0, có:

x2 - 4x = 0

=> x (x - 4) = 0

=> x = 0 hay x - 4 = 0

=> x = 0 hay x = 4

Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)

\(x^2+2x+3=0\)

\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)

\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)

=> \(x^2+2x+3\)vô nghiệm

21 tháng 6 2016

\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)

\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)

Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm