K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(f\left(x\right)=x^2+x+x+2\)

\(f\left(x\right)=x^2+2x+1+1\)

\(f\left(x\right)=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)

\(\Leftrightarrow f\left(x\right)\ge1\)

Vậy f(x) > 0 nên phương trình không có nghiệm

7 tháng 5 2018

Ta có : \(f\left(x\right)=x^2+x+x+2\)

                      \(=x^2+x+x+1+1\)

                      \(=x\left(x+1\right)+\left(x+1\right)+1\)

                      \(=\left(x+1\right)\left(x+1\right)+1\) 

                      \(=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy đa thức f(x) không có nghiệm

_Chúc bạn học tốt_

26 tháng 4 2018

\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\)  > 0 với mọi x

Vậy đa thức f(x) không có nghiệm

26 tháng 4 2018

Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.

\(\Rightarrow x^2+2x+1+2=0\)

\(\Rightarrow x^2+x+x+1+2=0\)

\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)

\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+2=0\)

\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)

\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)

27 tháng 5 2016

Ta có:

3\(x^6\)\(\ge\)0 với mọi x

2\(x^4\)\(\ge\)0 với mọi x

\(x^2\)\(\ge\)0 với mọi x

=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x

Vậy f(x) không co nghiệm

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

25 tháng 4 2016

\(f\left(x\right)=x^2-x+1=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì  \(\left(x-\frac{1}{2}\right)^2\ge0\) với mọi x \(\in\) R

 \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\) với mọi x \(\in\) R

Vậy \(f\left(x\right)=x^2-x+1\) vô nghiệm trên tập hợp số thực R

23 tháng 7 2016

Ta có: x2 - 2x + 2 = x2 - 2x + 1 + 1 = (x - 1)2 + 1

Vì (x - 1)2 \(\ge\)0 => (x - 1)2 + 1 > 0

                                      Vậy đa thức f(x) = x2 - 2x + 2 không có nghiệm

13 tháng 5 2018

1)

a) Tìm nghiệm của đa thức $f(x) = 4x - x^2$

Cho $f(x) = 0$

$⇒ 4x - x^2 = 0$

$⇒ x(4 - x) = 0$

$⇒ x = 0$ hoặc $4 - x = 0$

$⇒ x = 0$ hoặc $x = 4$

Vậy nghiệm của đa thức là $x = 0$ và $x = 4$

13 tháng 5 2018

a) Nghiệm là 0

b)Vì \(x^2\) ≥ 0

\(x^4\) ≥ 0

1>0

nên \(x^2\) +\(x^4\) +1 >0

⇒f(x)= \(x^2\) +\(x^4\) +1 ko có nghiệm

21 tháng 5 2021

\(a)\)

\(\text{Ta có:}\)

\(x^2-2=0\)

\(\rightarrow x^2=x\)

\(\rightarrow x=\pm\sqrt{2}\)

Vậy ...

\(b)\)

\(\text{Ta có:}\)

\(x^2+5x+7\)

\(\rightarrow x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2\ge0\)

\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy ...

21 tháng 5 2021

a, Đặt \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

b, Ta có : \(Q\left(x\right)=x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy đa thức ko có nghiệm 

27 tháng 4 2016

\(A\left(x\right)=x^2-4x+7\)

\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)

\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)

\(\left(x-2\right)^2+3\ge3>0\) với mọi x E R

=>(1) không xảy ra

=>A(x) vô nghiệm   (đpcm)

\(p\left(x\right)=x^4+x^3+x+1\)

\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)

Vậy............................