Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\) > 0 với mọi x
Vậy đa thức f(x) không có nghiệm
Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.
\(\Rightarrow x^2+2x+1+2=0\)
\(\Rightarrow x^2+x+x+1+2=0\)
\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+2=0\)
\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)
\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)
Ta có:
3\(x^6\)\(\ge\)0 với mọi x
2\(x^4\)\(\ge\)0 với mọi x
\(x^2\)\(\ge\)0 với mọi x
=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x
Vậy f(x) không co nghiệm
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
\(f\left(x\right)=x^2-x+1=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) với mọi x \(\in\) R
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\) với mọi x \(\in\) R
Vậy \(f\left(x\right)=x^2-x+1\) vô nghiệm trên tập hợp số thực R
1)
a) Tìm nghiệm của đa thức $f(x) = 4x - x^2$
Cho $f(x) = 0$
$⇒ 4x - x^2 = 0$
$⇒ x(4 - x) = 0$
$⇒ x = 0$ hoặc $4 - x = 0$
$⇒ x = 0$ hoặc $x = 4$
Vậy nghiệm của đa thức là $x = 0$ và $x = 4$
a) Nghiệm là 0
b)Vì \(x^2\) ≥ 0
\(x^4\) ≥ 0
1>0
nên \(x^2\) +\(x^4\) +1 >0
⇒f(x)= \(x^2\) +\(x^4\) +1 ko có nghiệm
\(a)\)
\(\text{Ta có:}\)
\(x^2-2=0\)
\(\rightarrow x^2=x\)
\(\rightarrow x=\pm\sqrt{2}\)
Vậy ...
\(b)\)
\(\text{Ta có:}\)
\(x^2+5x+7\)
\(\rightarrow x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2\ge0\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy ...
a, Đặt \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
b, Ta có : \(Q\left(x\right)=x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy đa thức ko có nghiệm
\(A\left(x\right)=x^2-4x+7\)
\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)
\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)
Vì \(\left(x-2\right)^2+3\ge3>0\) với mọi x E R
=>(1) không xảy ra
=>A(x) vô nghiệm (đpcm)
\(p\left(x\right)=x^4+x^3+x+1\)
\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)
Vậy............................
\(f\left(x\right)=x^2+x+x+2\)
\(f\left(x\right)=x^2+2x+1+1\)
\(f\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)
\(\Leftrightarrow f\left(x\right)\ge1\)
Vậy f(x) > 0 nên phương trình không có nghiệm
Ta có : \(f\left(x\right)=x^2+x+x+2\)
\(=x^2+x+x+1+1\)
\(=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy đa thức f(x) không có nghiệm
_Chúc bạn học tốt_