Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
a) Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
hay \(x^2-x+1>0\forall x\)
hay đa thức \(x^2-x+1\) không có nghiệm(đpcm)
b) Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
hay \(x^2+x+1>0\forall x\)
hay đa thức \(x^2+x+1\) không có nghiệm(đpcm)
c) Ta có: \(x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)
hay \(x^2-2x+2>0\forall x\)
hay đa thức \(x^2-2x+2\) không có nghiệm(đpcm)
d) Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)
hay đa thức \(x^2+2x+2\) không có nghiệm(đpcm)
Bài 11:
a: Đặt f(x)=0
=>\(8x^2-6x-2=0\)
a=8; b=-6; c=-2
Vì a+b+c=0 nên pt có hai nghiệm là:
\(x_1=1;x_2=\dfrac{-2}{8}=\dfrac{-1}{4}\)
b: Đặt G(x)=0
\(\Leftrightarrow5x^2-6x+1=0\)
=>5x2-5x-x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
c: Đặt h(x)=0
=>-2x2-5x+7=0
\(\Leftrightarrow-2x^2-7x+2x+7=0\)
=>(2x+7)(-x+1)=0
=>x=1 hoặc x=-7/2
mh biết làm bài này rùi bn có cần mih đang lên cho bn ko?
\(3x^4+x^2+2\)
Vì \(3x^4\ge0\)
\(x^2\ge0\)
\(\Rightarrow3x^4+x^2+2\ge2\)
Vậy đt trên vô nghiệm
\(P\left(0\right)=0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
\(=0-0+0-0-0=0\)
=> x = 0 là nghiệm của P (x) (1)
\(Q\left(x\right)=5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
\(=0-0+0-0-\frac{1}{4}\)
\(=\frac{1}{4}\)
=> x = 0 không phải là nghiệm của Q (x) (2)
Từ (1) và (2) => x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Thay x=0 vào đa thức P(x) ta được:
\(0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
=\(0-0+0-0-0=0\)
Vậy x=0 là nghiệm của đa thức P(x)
Thay x=0 vào đa thức Q(x) ta được:
\(5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
=\(\frac{1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x)
Nhớ tick cho mình nha!
a) Sắp xếp đa thức trên theo lũy thừa giảm:
M(x) = 6x3 + 2x4 -x2 -x3 +2x2 -x4 +5 -5x3
M(x) = x4 + x2 + 5
b) M(-1) = (-1)4 + (-1)2 +5 = 7
M(1) = 14 + 12 + 5 = 7
c) hình như thiếu đề thì phải
\(R\left(x\right)=x^2+6x+11=\left(x^2+6x+9\right)+2=\left(x+3\right)^2+2\ge2>0\)
\(\Rightarrow R\left(x\right)\) không có nghiệm
\(H\left(x\right)=x^2-8x+20=\left(x^2-8x+16\right)+4=\left(x-4\right)^2+4\ge4>0\)
\(\Rightarrow H\left(x\right)\) không có nghiệm
làm vẫn thiếu bước ko hiểu gì hết