K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

Giả sử phân số \(\frac{12n+1}{30n+2}\) không tối giản

Đặt d là ƯCLN(12n+2;30n+2) nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1  (*)

Ta có:(12n+1) chia hết cho d;(30n+2) chia hết cho d

=>5.(12n+1)-2.(30n+2) chia hết cho d

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d ,mâu thuẫn với  (*)

do đó phân số \(\frac{12n+1}{30n+2}\) tối giản

 

 

3 tháng 2 2016

Ta có: \(\frac{12n+1}{30n+2}\Rightarrow\frac{12+1}{30+2}=\frac{13}{32}\) mà \(\frac{13}{32}\) là phân số tối giản

27 tháng 4 2016

Vì p+10 là SNT nên p không chia hết cho 2

Xét p=3 thì p+10=3+10=13 (thỏa)

                    p+14=3+14=17( thỏa)

Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)

Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )

Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )

Vậy p=3

27 tháng 4 2016

3)a)Gọi d là ƯCLN(12n+1;30n+2)

Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d

           30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d

Nên [5*(12n+1)-2*(30n+2)] chia hết cho d

hay (60n+5)-(60n+4) chia hết cho d

hay         1 chia hết cho d

nên d=1

Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản

14 tháng 3 2016

Gọi ƯCLN(n+1;2n+3)=d

=>n+1 chia hết cho d=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>2n+3 chia hết cho d

=>2n+3-(2n+2) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(n+1;2n+3)=1

Vậy (n+1)/(2n+3) (nEN)là p/s tối giản

24 tháng 5 2017

Gọi \(d=ƯCLN\left(n+1;2n+3\right)\)

Do đó \(d\inƯC\left(n+1;2n+3\right)\)

\(\Rightarrow n+1⋮d;2n+3⋮d\)

\(\Rightarrow2n+2⋮d;2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\) n+1 và 2n+3 là hai số nguyên tố cùng nhau.

Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản với \(\forall n\in N\).

9 tháng 6 2016

Đặt ưcln(n+3,n+4)=d(d€N*)

=>{n+3,n+4 chia hếtcho d

=>{4n+12,3n+12 chia hết cho d

=>4n+12-(3n+12)chia hết cho d

=>4n+12-3n-12 chia hết cho d

=>1chia hết cho d

=>d€ Ư(1)={ +-1}

Vậy n+3,n+4 nguyên tố cùng nhau

b) Gọi d là ƯC ( 2n + 3 ; 6n + 8 )

=> ( 2n + 3 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d

=> 3 ( 2n + 9 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d

=> [ ( 6n + 9 ) - ( 6n + 8 ) ] \(⋮\)d

=> 1 \(⋮\)  d ; d \(\in\) N* 

=> d = 1

 Vậy ƯCLN ( 2n + 3 ; 6 n+ 8 ) = 1 => \(\frac{2n+3}{6n+8}\) là phân số tối giản.

gọi d là ƯCLN(3a+4;2a+3)

ta có 3a+4 chia hết cho d;2a+3 chia hết cho d

suy ra 2(3a+4) chia hết cho d;3(2a+3) chia hết cho d

suy ra 6a+8 chia hết cho d;6a+9 chia hết cho d

suy ra [(6a+9)-(6a+8)] chia hết cho d

suy ra 1chia hết cho d

nên d=1;-1

suy ra3a+4;2a+3 là 2 SNT cùng nhau suy ra 3a+4phần 2a+3 là phân số tối giản

11 tháng 4 2016

Để chứng minh \(\frac{12n+1}{30n+1}\) là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau

Gọi ƯCLN(12n+1,30n+2)=d             (d thuộc n)

=> 12n+1 chia hết cho d       => 5(12n+1) chia hết cho d       => 60n+5 chia hết cho d

     30n+2 chia hết cho d       => 2(30n+2) chia hết cho d       => 60n+4 chia hết cho d

=>       (60n+5)-(60n+4) chia hết cho d

=>        1 chia hết cho d

=> thuộc Ư(1)={1}

=> d=1

=> ƯCLN(12n+1,30n+2)=1

Vậy \(\frac{12n+1}{30n+1}\) là phân số tối giản

26 tháng 4 2016

Gọi d là ƯCLN(2n+1;3n+2)

Ta có 2n+1 chia hết cho d nên 3(2n+1) cũng chia hết cho d hay 6n+3 cũng chia hết cho d

          3n+2 chia hết cho d nên 2(3n+2) cũng chia hết cho d hay 6n+4 cũng chia hết cho d

 Ta suy ra [(6n+4)-(6n+3)] chia hết cho d

                  (6n+4-6n-3) chia hết cho d

                   1 chia hết cho d

                      nên d=1

Vì ƯCLN(2n+1;3n+2)=1 nên 2n+1 phần 3n+2 là phân số tối giản (tick nhé banh)

26 tháng 4 2016

Gọi a là ước chung lớn nhất của \(\frac{2n+1}{3n+2}\)

suy ra 2n+1 chia hết cho a

3n+2 chia hết cho a

nên 3.(2n+1) chia hết cho a

2(3n+2) chia hết cho a

=> 6n+3 chia hết cho a

6n+4 chia hết cho a

vậy (6n+4)-(6n+3) chia hết cho a

1 chia hết cho a

vậy a=1

=> phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản.

 

 

17 tháng 3 2016

Chép sai đề bài bạn ơi, phần mẫu số phải là a2+a-1 chứ. Coi lại nhé bạn.

17 tháng 3 2016

+1 nhé, ở mấu đấy.