Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n có 2 trường hợp
Với n = 2k +1 ( k thuộc Z)
=> (2k+1+6) . (2k+1+7)
= (2k + 7) .( 2k + 8)
= (2k + 7) . 2.(k+4) (chia hết cho 2) ( 1 )
Với n = 2k
=> (2k + 6) . ( 2k + 7)
= 2. (k+3) . ( 2k + 7) ( chia hết cho 2) (2 )
Từ 1 và 2
=> moi n thuoc Z thi
(n+6)x(n+7) chia het cho 2
a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2
+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2
=> (n + 6).(n + 7) luôn chia hết cho 2
Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
b) n2 + n + 3
= n.(n + 1) + 3
Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2
=> n2 + n + 3 không chia hết cho 2
Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2
Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2
suy ra 13 giao thừa - 11 giao thừa chia hết cho 2
xin các bạn k cho mình nhé
ta có n^2+n+6
=n^2+2.n.1/2+(1/2)^2+6-(1/2)^2
=(n+1/2)^2+23/4
ta có (n+1/2)^2 không chia hết cho 5(1)
23/4 không chia hết cho 5(2)
từ (1),(2) suy ra(n+1/2)^2+23/4 không chia hết cho 5
A chia hết cho 15 => A không chia hết cho 3 hoặc 5
*xét A không chia hết cho 5
A=n2+n+1=n.n+n+1=n(n+1)+1
n(n+1) chỉ có thể tận cùng = 2,6,0,
=>n(n+1)+1 chỉ có thể có tận cùng =3,7,1
mà số có tận cùng = 3,7,1 không chia hết cho 5 => A không chia hết cho 15
A=n(n+1)+1
n(n+1) h hai so tu nhien lien tiep la so chan ko bao gio co tan cung =4
=> A la so le ko co tan cung la 5 => ko chia het cho 5=> ko chia het cho 15