K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

ta có :

527 = 53.9 = ( 53 )9 = 1259 < 1289 = 27.9 = ( 27 ) 9 = 263

=> 527 < 263 ( 1 )

lại có : 263 < 264 = 216.4 = ( 216 )4 = 655364 < 781254 = 57.4 = ( 57 ) 4 = 528 

=> 263 < 264 < 528

=> 263 < 528 ( 2 )

từ ( 1 ) và ( 2 ) ta thấy :

527 < 263 < 528 

( đpcm )

13 tháng 10 2021

Nguyễn Đức Minh Triết ơi, hãy nhập câu hỏi của bạn vào đây...

19 tháng 2 2016

Ta có: \(5^{27}=\left(5^3\right)^9=125^9\)

          \(2^{63}=\left(2^7\right)^9=128^9\)

Mà \(128^9>125^9\)

=> \(5^{27}<2^{63}\)  (1)

Ta có: \(5^{28}=\left(5^4\right)^7=625^7\)

          \(2^{63}=\left(2^9\right)^7=512^7\)

Mà \(512^7<625^7\)

=> \(2^{63}<5^{28}\)  (2)

Từ (1) và (2):

=> \(5^{27}<2^{63}<5^{28}\left(đpcm\right)\)

24 tháng 9 2015

chứng minh 263 lớn hơn 527 và nhỏ hơn 528

 

3 tháng 8 2017

5^27>5^25=> vô lý

527=(53)9=1259<1289=(27)9=263   (1)

263=(29)7=5127<6257=(54)7=528   (2)

từ (1) và (2) =>đpcm

27 tháng 2 2017

đề sai. có phải là 527<263<528 ko???

8 tháng 1 2017

ta có :

5= 15625

214 = 16384

58 =390625

vì 15625 < 16384 < 390625 => 56 < 214 < 58

11 tháng 3 2018

 \(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)

\(S=5.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Ta có :       \(\frac{1}{2^2}>\frac{1}{2.3},\frac{1}{3^2}>\frac{1}{3.4},\frac{1}{4^2}>\frac{1}{4.5},...,\frac{1}{100^2}>\frac{1}{100.101}\) 

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(\Rightarrow5.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)>5.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(\Rightarrow S>5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow S>5.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(\Rightarrow S>5.\frac{99}{202}\)

\(\Rightarrow S>\frac{495}{202}>\frac{404}{202}=2\)

\(\Rightarrow S>2\)

11 tháng 3 2018

\(CM:S< 5\)

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},...,\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}\)

\(\Rightarrow5.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< 5.\frac{99}{100}\)

\(\Rightarrow S< \frac{495}{100}< \frac{500}{100}\)

\(\Rightarrow S< 5\)

28 tháng 12 2015

5^27<x<5^28

=>x=27,5

tick nha