Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+5^4+...+5^{39}+5^{40}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{39}+5^{40}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{39}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{39}\right)⋮6\)
Suy ra \(A⋮3,A⋮2\).
ta có: S= 1 + 5 + 5^2 + 5^3 + .......+ 5^2015
=> S=(1+5+5^2+5^3)+(5^4+5^4+5^6+5^7)+.........+(5^2012+5^2013+5^2014+5^2015)
=> S=1.(1+5+5^2+5^3)+5^4.(1+5+5^2+5^3)+..........+5^2012.(1+5+5^2+5^3)
=>S=1.156+5^4.156+.........+5^2012.156
=>S=156.(1+5^4+.......+5^2012)
=>S=13.12.(1+5^4+.......+5^2012) chia hết cho 13
vậy S chia hết cho 13. ( đpcm)
CHÚC CÁC BẠN HỌC GIỎI.
\(S=1-5+5^2-5^3+...+5^{58}-5^{59}\)
\(5.S=5-5^2+5^3-5^4+...+5^{59}-5^{60}\)
\(5.S-S=1-5^{60}\)
\(4.S=1-5^{60}\)
\(S=\frac{1-5^{60}}{4}\)
Vậy\(S=\frac{1-5^{60}}{4}\)
a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
5+52+53+.....+529+530
= (5+52)+ (53+54)+.............+(529+530)
= 5(1+5) + 53(1+5)+....+529(1+5)
= 5.6 + 53.6 +....+529.6
= 6( 5+53+....+529)
Vì 6 \(⋮\)6 nên 6( 5+53+....+529)\(⋮\)6
Vậy.....