Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4+4^2+.....+4^{100}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{99}+4^{100}\right)\)
Vì các nhóm trên đều có chữ số tận cùng là 0
\(\Rightarrow B⋮5\left(đpcm\right)\)
\(B=4+4^2+4^3+...+4^{99}+4^{100}\)
\(4B=4^2+4^3+4^4+...+4^{100}+4^{101}\)
\(3B=4^{101}-4\)
\(B=\frac{4^{101}-4}{3}\)
Đặt A=\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
A=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
A=\(3^1\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
A=\(3^1\cdot4+3^3\cdot4+...+3^{99}\cdot4\)
A=\(4\left(3^1+3^3+...+3^{99}\right)⋮4\left(đpcm\right)\)
1.
\(\left(x+2\right)^3=\frac{1}{8}\)
\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x+2=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}-2\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}.\)
2.
b) Ta có:
\(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.\left(25-5+1\right)\)
\(=5^3.21\)
Vì \(21⋮7\) nên \(5^3.21⋮7.\)
\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)
c) Ta có:
\(2^{19}+2^{21}+2^{22}\)
\(=2^{19}.\left(1+2^2+2^3\right)\)
\(=2^{19}.\left(1+4+8\right)\)
\(=2^{19}.13\)
Vì \(13⋮13\) nên \(2^{19}.13⋮13.\)
\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!
a, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)
3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101
3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)
2A = 3101 - 31 = 3101 - 3
A = \(\frac{3^{101}-3}{2}\)
b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)
A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)
A = 120 +...+ 396.120
A = 120(1 +...+ 396) chia hết cho 40 (ĐPCM)
3nx9 - 2^n x 16 + 3^n + 2^n
= 3^n x 10 + 2^n x 15
=3^(n-1) x 30 + 2^(n-1) x 30
=( 3^(n-1)+ 2(n-1)) x 30 chia hết cho 30
Nhớ nha
Ta có :
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=(3^1+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})\)
\(=3(1+3)+3^3(1+3)+...+3^{99}(1+3)\)
\(=3.4+3^3.4+...+3^{99}.4\)
\(=4.(3+3^3+...+3^{99})\)chia hết cho 4
\(3+3^2+3^3+3^4+...+3^{99}+3^{100}.\)
\(=3\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\left(3+3^2+...+3^{99}\right)⋮4\)