Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
a,n-3 chia hết n+3
có n-3 chia hết n+3
<=> n+3-6chia hết n+3
vì n+3 chia hết n+3 nên 6 chia hết n+3
=>n+3 thuộc ước 6 ={1;2;3;6}
=> n = 4;5;6;9
Ta có :
\(n^2 - 1 = (n-1)(n+1)\)
\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp
\(=> (n-1)(n+1) \) chia hết cho \(8\) \((1)\)
Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)
Với \(n= 3k + 1\)
\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3
Với \(n = 3k+2\)
\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3
- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)
\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)
Đề sai nhé !
Giả sử thay n = 2 thì 3.2 + 1 = 7 không chia hết cho 3
Đề phải là tìm số n để 3n + 1 chia hết cho n + 1
Ta có : 3n + 1 chia hết cho n + 1
<=> 3n + 3 + 5 chia hết cho n + 1
<=> 3(n + 1) + 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {1;5}
+ n + 1 = 1 => n = 0
+ n + 1 = 5 => n = 4
3n + 1 \(⋮\)n + 1
= 3( n + 1 ) \(⋮\)n + 1
Vì n + 1 \(⋮\)n + 1 cho nên 3 \(⋮\)n + 1 \(\Rightarrow\)n + 1 \(\in\)Ư(3)
Mà Ư(3) = { 1;-1;3;-3 } \(\Rightarrow\)n + 1 = { 1;-1;3;-3 } \(\Rightarrow\)n \(\in\){ 0;-2;2;-4 }