Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
b) Ta thấy : 21 = 3 .7 ( 3 ; 7 ) = 1
để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7
Ta có :
B = 21 + 22 + 23 + 24 + ... + 230
B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )
B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )
B = 2 . 3 + 23 . 3 + ... + 229 . 3
B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )
Lại có : B = 21 + 22 + 23 + 24 + ... + 230
B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )
B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )
B = 2 . 7 + 24 . 7 + ... + 228 . 7
B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)B \(⋮\)21
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
1/2^2<1/(1.2)
1/3^2<1/(2.3)
...
1/2010^2<1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1/(1.2)+1/(2.3)+...+1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1-1/2+1/2-1/3+...+1/2009-2010
=>1/2^2+1/3^2+...+1/2010^2<1-1/2010
=>=>1/2^2+1/3^2+...+1/2010^2<1(đpcm)
B=1/22+1/32+1/42+...+1/82 < 1/1.2+1/2.3+1/3.4+...+1/7.8=1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
=1-1/8<1
=> B<1/1.2+1/2.3+1/3.4+...+1/7.8<1
Vậy B<1
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
kết luận:đpcm
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{50^2}< \frac{1}{49.50}\)
Nên\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{49.50}\)
<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}\)
<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1-\frac{1}{50}=\frac{49}{50}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1\) (đpcm)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(< 1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\)