Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n < 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2008.2009 + 1/2009.2010
n < 1/1-1/2 + 1/2-1/3 + 1/3-1/4 +...+ 1/2008-1/2009 + 1/2009-1/2010 (công thức)
n < 1/1- (1/2-1/2)- (1/3-1/3)-...- (1/2009-1/2009)-1/2010 (quy tắc dấu ngoặc)
n < 1/1 - 1/2010
n < 2009/2010
Vậy n<2009/2010<1
ta có \(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}.\)
ta lại có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(\Rightarrow N< A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
hay \(N< 1\left(đpcm\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)
Chúc bạn học tốt ~
ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1\left(đpcm\right)\)
D = \(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{10\cdot10}\) < \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
=> D < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
=> D < \(1-\frac{1}{10}\)< 1 => D < 1
Ta có : 1/22 = 1/2.2 < 1/1.2
1/32 = 1/3.3 < 1/2.3
-------------------------
1/102 = 1/10.10 < 1/9.10
=> 1/22+1/32+1/42+......+1/102 < 1/1.2 + 1/2.3 + ...+1/9.10
=> D < 1 - 1/2 + 1/2 - 1/3 + ... + 1/9 -1/10
=> D < 1-1/10
=> D < 9/10
Mà 9/10 < 1
=> D < 1
Thật vậy 1/22 < 1/1.2
1/23 < 1/2.3
........................
1/20122 < 1/2011.2012
1/20132 < 1/2012.2013
1/22 + 1/22 + .....+1/20122 + 1/20132 < 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013 (1)
Mà 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013
= 1 - 1/2 + 1/2 - 1/3 + .....+ 1/2011 - 1/2012 + 1/2012 - 1/2013
= 1 - 1/2013
= 2012/2013 < 1 (2)
Từ (1) và (2) => A<1
Chứng tỏ rằng :
a) 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4+.....+1 phần 49.50 <1
b)1 phần 22 + 1 phần 32 + 1 phần 42+.....+1 phần 20082 + 1 phần 20092 <1
Toán lớp 6
ai tích mình tích lại
\(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); \(\frac{1}{5^2}< \frac{1}{4.5}\); ......; \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
Lại có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
Vậy: \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.....+\frac{1}{100^2}< \frac{1}{2}\)=> đpcm
ks cho mik=)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2008.2009}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2008}-\frac{1}{2009}\)
\(=1-\frac{1}{2009}\)
\(=\frac{2009}{2009}-\frac{1}{2009}\)
\(=\frac{2008}{2009}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}< 1\left(đpcm\right)\)