Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì chia hết cho 45 suy ra chia hết cho 9và 5
mà 10 mũ 2003+125=1000000000.....(2003 chữ số 0)+125=100000000..125(2000 số 0) có tổng các chữ số chia hết cho 9 và có tận cùng là 5 chia hết 5
vì 543.799.11 có tận cùng là 7 và 58 có tận cùng là 8 nên sẽ có tận cùng là 5 chia hết cho 5
ta có : 10\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)\(⋮\)5 mà 125\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)+ 125\(⋮\)5
ta lại có 10\(^{2003}\)= 1000...0000 có tổng các chữ số bằng 1
\(\Rightarrow\)10\(^{2003}\)+ 125 có tổng các chữ số bằng 1 + 2 + 1 + 5 = 9 nên :
10\(^{2003}\)\(⋮\)9 mà ( 5 ; 9 ) = 1
\(\Rightarrow\)10\(^{2003}\)+ 125 \(⋮\)45
Ta có: 10x10x10x10x10x10x......x10 +11
có tất cả 2003 so 10
= 10000000000000.......0 +11
=10000000000000000......011
=> 100000000......011 chia hết cho 3=> là hợp số
a) 26.6101 + 1
= 64.(...6) + 1
= (...4) + 1
= (...5) chia hết cho 5, là hợp số
b) Vì 2001.2002.2003.2004.2005 chia hết cho 5; 10 chia hết cho 5
nên 2001.2002.2003.2004.2005 - 10 chia hết cho 5, là hợp số
c) Ta thấy: 1991.1992.1993.1994 có tận cùng là 4
=> 1991.1992.1993.1994 + 1 có tận cùng là 5, chia hết cho 5, là hợp số
d) Ta có:
\(10\equiv1\left(mod3\right)\)
\(\Rightarrow10^{100}\equiv1\left(mod3\right)\) (1)
\(7\equiv1\left(mod3\right)\) (2)
Từ (1) và (2) \(\Rightarrow10^{100}-7⋮3\), là hợp số
e) Tổng các chữ số của 111...1 (2007 chữ số 1) là: 1 + 1 + 1 + ... + 1 = 2007 chia hết cho 3 (2007 số 1)
=> 111...11 (2007 c/s 1) chia hết cho 3, là hợp số
f) Ta có: 1111...1 (2006 c/s 1)
= 1111...1000...0 + 1111...1
(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)
= 1111...1.1000...0 + 1111...1
(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)
= 1111...1.1000...01 chia hết cho 1111...1, là hợp số
(1003 c/s 1)(1002 c/s 0) (1003 c/s 1)
\(10^{2003}+125=10...000+125=10...125\left(\text{2000 chữ số 0}\right)\)chia hết cho 5 (1)
Mà 10...125 có tổng các chữ số là: 1+0+0+...+1+2+5 (2000 số 0) = 9 nên chia hết cho 9 (2)
và ƯCLN(5; 9)=1 (3)
Từ (1); (2) và (3) => 102003+125 chia hết cho 5.9 hay 102003+125 chia hết cho 45 (đpcm).
Ta có : 102003 + 125 chia hết cho 5 ( bạn tự làm được)
102003 + 125 chia hết cho 9 ( bạn tìm tổng các chữ số )
Do (5;9)=1 mà 102003 + 125 chia hết cho 9 và 5
=> 102003 + 125 chia hết cho 9.5=45
Vậy ...
Vì 12976 là số chẵn nên \(⋮2\Rightarrow\)12976 là hợp số.
Vì 15000 là số chẵn nên \(⋮2\Rightarrow\)15000 là hợp số.
Vi \(10^{10}+8\)là số chẵn nên \(⋮2\Rightarrow\)\(10^{10}+8\)là hợp số.
Vì 496728 là số chẵn nên \(⋮2\Rightarrow\)496728 là hợp số.
Ta có \(10^{2003}+11=1000..00+11=1000...11\)
Tổng các chữ số bằng 3
\(\Rightarrow10^{2003}+11⋮3\)
Vậy nó là hợp số
Ta có: 102003 + 11 = 100...00 + 11 = 100...11
Ta thấy: 100...11 có tổng các chữ số bằng 0
\(\Rightarrow\) 100...11 \(⋮\) 3 hay 102003 + 11 \(⋮\) 3
Vậy: 102003 + 11 là hợp số