Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+............+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{52}+.........+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+........+\frac{1}{100}\right)\)
\(>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{1}{2}\)
\(\left(\frac{1}{51}+\frac{1}{52}+..........+\frac{1}{75}\right)+\left(\frac{1}{76}+........+\frac{1}{100}\right)\)
\(< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}< 1\)
\(\Rightarrowđpcm\)
Ta có :
\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{52}+....+\frac{1}{100}\)
\(\Rightarrow H>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\)
\(\Rightarrow H>\frac{1}{100}.50\)
\(\Rightarrow H>\frac{1}{2}\)
Lại có :
\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\)
\(\Rightarrow H< \frac{1}{51}+\frac{1}{51}+\frac{1}{51}+........+\frac{1}{51}\)
\(\Rightarrow H< \frac{1}{51}.50\)
\(\Rightarrow H< \frac{50}{51}\)
\(\Rightarrow H< 1\)
Vậy \(\frac{1}{2}< H< 1\left(ĐPCM\right)\)
a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)
\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)
\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)
\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)
.... (tương tự )
\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)
\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)
Từ (1)(2)(3)(4) và (5)
\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)
\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{75}\right)+...+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)
\(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{75}< \frac{1}{2}\)
\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{75}+\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{3}=\frac{5}{6}< 1\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{3}\)
\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{4}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)