K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Ta có : \(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2-4+5\right)\left(n^2-1+5\right)=\left[n\left(n^2-4\right)+5n\right]\left[\left(n^2-1\right)+5\right]=n\left(n^2-4\right)\left(n^2-1\right)+5n\left(n^2-4\right)+5n\left(n^2+4\right)\)

\(=n\left(n^2-4\right)\left(n^2-1\right)+5n\left(n^2-4+n^2+4\right)=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+10n^3\)

Vì (n-2)(n-1).n.(n+1)(n+2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5

\(10n^3\) có chứa thừa số 5 nên chia hết cho 5

Do đó ta có điều phải chứng minh.

31 tháng 1 2017

Ta có n có thể là chẫn hoặc lẻ

Nếu n chẵn thì n = 2k 

Thay vào ta có : (2k + 4)(2k + 5) = 2.(k + 2)(2k + 5) chia hết cho 2

Nếu n lẻ thì n = 2k + 1

Thay vào ta có: (2k + 5)(2k + 6) = 2.(2k + 5)(k + 3) chia hết cho 2

Vậy với mội số tự nhiên n (n + 4)(n + 5) đều chia hết cho 2

31 tháng 1 2017

Vì tích trên là tích của 2 số tự nhiên liên tiếp nên luôn luôn tận cùng là 0,2.6.

Mà các số có tận cùng là 0,2,6 đều chia hết cho 2 nên tích (n+4)(n+5)luôn luôn chia hết cho 2.

8 tháng 8 2018

a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm

b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm

8 tháng 8 2018

a) Ta có: 4n+6 có chữ số tận cùng là số chẵn

=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn

Mà các số có chữ số chẵn tận cùng đều chia hết cho 2

Vậy (5n+7).(4n+6) chia hết cho 2

b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ

                 6n+5 có chữ số tận cùng cũng là một số lẻ

=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ

=> (8n+1).(6n+5) không chia hết cho 2

2 tháng 8 2016

a . Ta có : \(n+10⋮n+1\)

\(n+1+9⋮n+1\)

\(n+1⋮n+1\)

\(\Rightarrow9⋮n+1\)

\(\Rightarrow n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\)

Ta có bảng sau :

n +1139
n028

 

7 tháng 11 2017

n+10 n+1 1 n+1 9 để n+10 chia hết n+1 thì

9chia hết cho n+1

=>n+1 \(\inƯ\left(9\right)=\left\{1;3;9\right\}\)

ta có bảng sau

n+1 1 3 9
n 2 4 10
tm tm tm

vậy...

29 tháng 7 2018

\(9^{2n}=\left(9^2\right)^n=81^n=\overline{......1}\)

\(\Rightarrow9^{2n}-1=\overline{.....1}-1=\overline{....0}⋮2\text{ và }5\)

\(\Rightarrowđpcm\)

29 tháng 7 2018

9^2n =81^n có CSTC là 1 =. 9^2n-1 có CSTC là 0 => 9^2n-1 chia hết cho 2vaf 5

22 tháng 1 2017

ta có:n+1 chia hết cho n+4

n+1 chia hết cho n+1

=>(n+1)-(n+4) chia hết cho (n+4)

=>n+1-n+4 chia hết cho n+4

=>     -3 chia hết cho n+4

=>n+4 thuộc Ư(-3)={1;-1;3;-3}

rồi sau đó bạn lập bảng hoặc ghi chữ

22 tháng 1 2017

ý nào vậy bạn

30 tháng 7 2015

a)38-3n chia hết cho n

=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}

b)n+5 chia hết cho n+1

=>n+1+4 chia hết cho n+1

=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}

=>n thuộc{0;1;3}

c)3n+4 chia hết cho n-1

3(n-1)+7chia hết cho n-1

=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}

=> n thuộc{2;8}

d)3n+2 chia hết cho n-1

3(n-1)+5 chia hết cho n-1

=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}

=>n thuộc{2;6}

có j ko hiểu hỏi mk

13 tháng 10 2016

THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !

13 tháng 10 2016

1 / 

B = 15 + 17 - 16

B = 16

mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra

2 / 

 a ) N = 1 đó

 b ) N = 1 đó

cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1

còn lại tương tự nhé !

mình còn làm violympic nữa

15 tháng 10 2019

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n