Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
Cho \(A=2+2^2+2^3+2^4+...+2^{60}\)
Chứng tỏ
a, A chia hết cho 3
b, A chia hết cho 5
c, A chia hết cho 7
a) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+...+2^{59}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(A⋮3\)
b) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)
\(=5\left(2+2^2+...+2^{58}\right)⋮5\)
Vậy \(A⋮5\)
c) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+..+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
Vậy \(A⋮7\)
Cho \(A=2+2^2+2^3+2^4+...+2^{60}\)
Chứng tỏ
a, A chia hết cho 3
b, A chia hết cho 5
c, A chia hết cho 7
a) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(A⋮3\)
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
A=1+4+42+43+...+42014
A=(1+4+42)+(43+45+46)+...+(42012+42013+22014)
A=21.(1+43+...+42012)
B=1+7+72+...+7101
B=(1+7)+(72+73)+...+(7100+7101)
B=8(1+72+...+7100)
a) \(A=2+2^2+2^3+2^4+....+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(=\left(1+2\right)\left(2+2^3+...+2^{59}\right)\)
\(=3\left(2+2^3+...+2^{59}\right)\)\(⋮\)\(3\)
b) mk chỉnh lại đề
\(7^6+7^5+7^4=7^4\left(7^2+7+1\right)=7^2.57\)\(⋮\)\(57\)