K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ta có:

4(x – 2) – 3x = x – 8

⇔ 4x – 8 – 3x = x – 8

⇔ x – 8 = x – 8 (thỏa mãn với mọi x)

Vậy phương trình đã cho có vô số nghiệm.

13 tháng 1 2016

Ngồi tick kiếm "tiền"

Ngồi làm mất thời gian

AI thấy đúng thì tick nhé!!!

23 tháng 3 2020

a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)

\(\Leftrightarrow0x=-9\)(vô lí)

Vậy phương trình vô nghiệm

b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)

chúc bn học tốt!

20 tháng 3 2018

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

đặt \(\left(x^2+x\right)=t\)  ta có 

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2+6t-2t-12=0\)

\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)

khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường 

27 tháng 12 2019

Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm.

7 tháng 4 2020

Ta có: \(x^2-3x+4=x^2-2\cdot\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

=> PT vô nghiệm

8 tháng 4 2020

Bài 2 :

Gọi số đã cho có dạng ab 

Vì a + b = 10

=> b = 10 - a

Ta có :

ba - ab = 18

=> 10b + a - 10a - b = 18

=> 10(10 - a) + a - 10a - (10 - a) = 18

=> 100 - 10a + a - 10a - 10 + a = 18

=> -18a + 90 = 18

=> -18a = -108

=> a = 6

=> b = 4

Vậy số đã cho là 64

p/s : Tưởng bài lớp 5 ?

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)