K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2015

Gọi U là UCLN của (14n+3) và (21n+4) 
Để phân số (14*n+3)/(21*n+4) tối giản thì U=1. 
ta có: 
14n+3 chia hết cho U và 21n+4 chia hết cho U 
=> 3(14n+3) chia hết cho U và 2(21n+4) chia hết cho U 
=> 3(14n+3)-2(21n+4) chia hết cho U 
=> 1 chia hết cho U 
=> u=+-1 
Vậy UCLN của (14n+3) và (21n+4) là 1, 
hay phân số (14*n+3) / (21*n+4) tối giản

1 tháng 5 2015

Gọi d là UC(30 x n + 2;12 x n + 1)
Ta có: 30 x n + 2 = 2.(30 x n + 2) = 60 x n + 4
12 x n + 1 = 5.(12 x n + 1) = 60 x n + 5
Vì d là UC(30 x n + 2;12 x n + 1) nên 
=> 60 x n + 4 chia hết cho d
=> 60 x n + 5 chia hết cho d
=> (60 x n + 5) - (60 x n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = +1
Vậy p/s \(\frac{30.n+2}{12.n+1}\) là p/s tối giản

23 tháng 2 2016

Gọi UCLN(3 x n;3 x n+1)=d

Ta có 3 x n chia hết cho d

      3 x n+1 chia hết cho d

=>(3 x n+1)-(3 x n) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số trên tối giản

23 tháng 2 2016

Gọi d là ƯC ( 3n ; 3n + 1 )

=> 3n ⋮ d

=> 3n + 1 ⋮ d

=> [ ( 3n + 1 ) - 3n ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 3n ; 3n + 1 ) = 1 nên 3n/3n+1 là p/s tối giản ( đpcm )

26 tháng 2 2017

Gọi d là ƯCLN của n + 1 và 2n + 3

Khi đó n + 1 chai hết cho d ; 2n + 3 chia hết cho d

<=> 2n + 2 chia hết cho d  ; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chai hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy p/s n + 1/2n + 3 tối giản vs mọi n thuộc N

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

21 tháng 7 2015

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

9 tháng 3 2018

giỏi lắm hoàng cảm ơn nhiều

16 tháng 3 2022

Gọi ƯCLN (n;n+1) = d ( d \(\in\)N*) 

\(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

16 tháng 3 2022

tài năng quá mấy bạn

11 tháng 3 2024

rrxdưAsse ddgjug fcrddf3ưeesfffdd

8 tháng 4 2016

Gọi ƯCLN ( n+2015 ; n+2016 ) = d

=> n+2015 chia hết cho d; n+2016 chia hết cho d

=> ( n+2016 ) - ( n+2015 ) chia hết cho d

=> 1 chia hết cho d

=> d=1 

=> ( n+2015 ; n+2016 ) = 1 => $\frac{n+2015}{n+2016}$ là PSTG ( ĐPCM )

8 tháng 4 2016

Ta thấy : n là số tự nhiên (1)

Và : 2015;2016 là hai số tự nhiên liên tiếp (2)

Từ (1) (2) ta suy ra được n+2015 và n+2016 là hai số tự nhiên liên tiếp

Hai số tự nhiên liên tiếp khi viết dưới dạng phân số thì luôn luôn là phân số tối giản

Vậy: \(\frac{n+2015}{n+2016}\) là phân số tối giản