K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

bài tương tự giống thế này này 

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

vào thống kê nhé 

hc tốt

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

25 tháng 10 2018

Bài 4:

Ta có:

M=1+7+72+...+781

M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)

M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)

M=400+74.400+...+778.400

M=400.(1+74+...+778)

\(\Rightarrow\)M=......0

Vậy chữ số tận cùng của M là chữ số 0

Bài 5:

a)Ta có:

M=1+2+22+...+2206

M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)

M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)

M=7+23.7+...+2204.7

M=7.(1+23+...+2204)\(⋮\)7

Vậy M chia hết cho 7

c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:

Ta có:

      M=1+2+22+...+2206

     2M=2+22+23+...+2207

 2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)

       M=2+22+23+...+2207-1-2-22-...-2206

\(\Rightarrow\)M=2207-1

M+1=2207-1+1

M+1=2207

Ta có:

M+1=2x

2x=M+1

2x=2207

x=2207:2

x=\(\frac{2^{207}}{2}\)

Bài 6:

Ta có:

A=(1+3+32)+(33+34+35)+...+(357+358+359)

A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)

A=13+33.13+...+357.13

A=13.(1+33+..+357)\(⋮\)13

Vậy A chia hết cho 13

mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha

DD
24 tháng 10 2021

a) \(A=3^1+3^2+3^3+...+3^{60}\)

\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{58}\right)⋮13\)

b) \(B=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{17}\right)\div5\)

7 tháng 10 2019

1)

a)\(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

2)

a) Có: \(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\)

\(\left\{{}\begin{matrix}99\overline{ab}⋮99\\\left(\overline{ab}+\overline{cd}\right)⋮99\end{matrix}\right.\)

\(\Rightarrow\overline{abcd}⋮99\)

b) Có: \(\overline{abcdef}=1000\overline{abc}+\overline{def}=999\overline{abc}+\left(\overline{abc}+\overline{def}\right)=37\cdot27\cdot\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)

\(\left\{{}\begin{matrix}37\cdot27\cdot\overline{abc}⋮37\\\left(\overline{abc}+\overline{def}\right)⋮37\end{matrix}\right.\)

\(\Rightarrow\overline{abcdef}⋮37\)

3)

a) Có: \(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\\ A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\\ A=13+3^3\cdot13+...+3^{1998}\cdot13\\ A=13\left(1+3^3+...+3^{1998}\right)⋮13\)

b) Có: \(B=1+4+4^2+...+4^{2010}+4^{2011}+4^{2012}\\ B=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\\ B=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\\ B=21+4^3\cdot21+...+4^{2010}\cdot21\\ B=21\left(1+4^3+...+4^{2010}\right)⋮21\)

22 tháng 11 2017

a, 3A = 3^2+3^3+....+3^103

2A=3A-A=(3^2+3^3+....+3^103)-(3+3^2+...+3^102) = 3^103 - 3

=> A = 3^103-3/2

b, Nhóm 3 số thành 1 nhóm  : ví dụ 3+3^2+3^3 = 3. (1+3+3^2) = 3.13 chia hết cho 13

c, Nhóm 3 số thành 1 nhóm : ví dụ 3+3^2+3^3= 1.(3+3^2+3^3) = 1.39 chia hết cho 39

d, Từ 3^3 trở đi thì nhóm 4 số thành 1 nhóm : ví dụ 3^3+3^4+3^5+3^6 = 3.(1+3+3^2+3^3) = 3.40 chia hết cho 40

Còn lại : 3+3^2 = 12 chia 40 dư 12 => A chia 40 dư 12

k mk nha

24 tháng 8 2017

  Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và  a2b2 = 2.(-5) =(-1).10 =c2d2

P(x) = (9x2 – 9x – 10)(9x2  + 9x – 10) + 24x2

Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:

          Q(y) = y(y + 10x) = 24x2

          Tìm  m.n = 24x2 và  m + n = 10x ta chọn được  m = 6x , n = 4x

Ta được: Q(y) = y2 + 10xy + 24x2

                                = (y + 6x)(y + 4x)

Do đó:     P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).

11 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui