Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có: $2002\vdots 2\Rightarrow 2002^{2003}\vdots 2$
$2003\not\vdots 2\Rightarrow 2003^{2004}\not\vdots 2$
$\Rightarrow 2002^{2003}+2003^{2004}\not\vdots 2$
Câu 2:
$3^2\equiv -1\pmod 5$
$\Rightarrow 3^{4n}=(3^2)^{2n}\equiv (-1)^{2n}\equiv 1\pmod 5$
$\Rightarrow 3^{4n}-6\equiv 1-6\equiv 0\pmod 5$
$\Rightarrow 3^{4n}-6\vdots 5$
\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}\left(5^2+5+1\right)\)
\(=5^{2001}.31\)chia hết cho 31.
*ĐỂ CHỨNG MINH chia hết ta dùng phương pháp tình CHỮ SỐ TẬN CÙNG
Ta thấy chữ số tận cùng của \(43^{43}\)chính là chữ số tận cùng của \(3^{43}\)
Ta có \(3^{43}=3^{40}.3^3=\left(3^4\right)^{10}.3^3=81^{10}.27\)
Vì 81 tận cùng là 1 nên \(81^{10}\)tận cùng bằng 1 suy ra \(81^{10}.27\)tận cùng bằng 7 . Do vậy \(3^{43}\)tận cùng bằng 7
Khi đó \(43^{43}\)tận cùng bằng 7 (1)
Ta thấy chữ số tận cùng của \(17^{17}\)chính là chữ số tận cùng của \(7^{17}\)
Ta có \(7^{17}=7^{16}.7=\left(7^4\right)^4.7=2401^4.7\)
Vì 2401 tận cùng bằng 1 nên \(2401^4\)tận cùng bằng 1 suy ra \(2401^4.7\)tận cùng bằng 7 hay \(7^{17}\)tận cùng bằng 7
Khi đó\(17^{17}\)tận cùng bằng 7 (2)
Từ (1) và (2) suy ra \(43^{43}-17^{17}\)tận cùng bằng 0 hay \(43^{43}-17^{17}\)chia hết cho 10
Bạn muốn biết có chia hết cho mười không thì ban phải quan tâm đến số cuối cùng , nếu nó là 0 thì chia hết cho 10
Số cuối cùng của \(^{17^{1997}}\):
\(17^{1997}\)= \(17^4\)x \(17^{1993}\)
\(17^4\) có số tận cùng là 1
Vì số cuối là 1 nên số cuối của lũy thừa này bằng 1
Số cuối cùng của \(24^{1996}\)
Cơ số có số cuối là 4
\(4^1\)=4
\(4^2\)=16
\(4^3\)=64
\(4^4\)=256
Vậy ta có thể suy ra nếu 4 có số mũ lẻ thì số tận cùng là 4
Nếu mũ chẳn thì số tận cùng là 6
\(24^{1996}\) có số mũ là số chẵn nên chữ số tận cùng la 6
Số tận cùng của \(33^{2001}\)
\(3^3\)số cuối la 7
\(3^7\)số cuối là 7
\(3^{11}\)số cuối là 7
Từ \(3^3\)cứ cách đều hàng mũ cho đến mũ 2001 thì số cuối la 7
Bài toán trên ta chỉ cần rút cacas lũy thừa thành số mũ của nó
Ta có : 1 + 6 -7 = 0
Vì nếu có số 0 cuối cùng thì có thể chia hết cho 10