K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

ko hiểu gì luôn

11 tháng 4 2018

\(A=x^2+3x+3=x^2+2\cdot\frac{3}{2}\cdot x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)

=> \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) => \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

=> Đa thức A vô nghiệm.

11 tháng 5 2019

\(x^2-4x+5=\left(x-2\right)^2+1\ge0\)

Vậy M(x) không có nghiệm

11 tháng 5 2019

Vì \(x^2\ge0;4x\ge0\Rightarrow x^2-4x+5\ge0+5>0\)

\(\Rightarrow M\left(x\right)=x^2-4x+5\)không có nghiệm

24 tháng 3 2017

Ta có:

\(a+b=c+d\)

\(\Leftrightarrow a+c=b+d\)

\(\Leftrightarrow-a+b-c+d=0\)

\(\Leftrightarrow P\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)

\(\Leftrightarrow-a+b-c+d=0\)

Vậy đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) có 1 trong nghiệm bằng \(-1\) nếu \(a+b=c+d\) (Đpcm)

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

22 tháng 3 2017

lop 7 co hoc tim nghiem a (nghiem la gia tri cua bien de da thuc do nhan gia tri la 0)

P(x)=...

vì 3x^4>=0; (1/2)x^2>=0

100>=

suy ra P(x) > 0 (luon dung voi x thuoc so thuc) <=> vo nghiem

F(x)=x^2-2x+2012

<=> F(x)=x^2-2x+1+2011

<=> F(x)=(x-1)^2+2011

vi (x-1)^2>=0 voi moi x thuoc so thuc

suy ra F(x)>0 voi moi x thuoc so thuc <=> vo nghiem

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

17 tháng 4 2020

\(D=\frac{9x^2+6x+1}{3x+1}\left(x\ne\frac{-1}{3}\right)\)

\(\Leftrightarrow D=\frac{\left(3x+1\right)^2}{3x+1}=3x+1\)

thay x=-4(tm) vào biểu thức D ta có: D=3.(-4)+1=-12+1=-11

vậy D=-11 với x=-4