Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a) Sắp xếp đa thức trên theo lũy thừa giảm:
M(x) = 6x3 + 2x4 -x2 -x3 +2x2 -x4 +5 -5x3
M(x) = x4 + x2 + 5
b) M(-1) = (-1)4 + (-1)2 +5 = 7
M(1) = 14 + 12 + 5 = 7
c) hình như thiếu đề thì phải
A, \(M\left(-1\right)=0\)
\(m\left(-1\right)^2+2m\left(-1\right)-3=0\)
\(-m-3=0\)
\(m=-3\).
B, \(A\left(x\right)=2x^3+x=x\left(2x^2+1\right)=0\)
\(\Leftrightarrow x=0\)vì \(2x^2+1>0\forall x\inℝ\).
A, Xét đa thức \(M\left(x\right)=mx^2+2mx-3\)
\(M\left(-1\right)=m-2m-3\)
Mà \(x=-1\) là 1 nghiệm của \(M\left(x\right)\)
\(\Rightarrow M\left(-1\right)=0\)
\(\Rightarrow m-2m-3=0\)
\(-m-3=0\)
\(\Rightarrow m=-3\)
Vậy \(m=-3\).
B, Cho \(A\left(x\right)=0\Rightarrow2x^3+x=0\)
\(\Rightarrow x\left(2x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)
Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1>0\)
\(\Rightarrow x=0\) là nghiệm của đa thức \(A\left(x\right)=2x^3+x\)
Vậy đa thức \(A\left(x\right)=2x^3+x\) có 1 nghiệm duy nhất là \(x=0\).
2x4>hoac =0
x2> hoac =0
=> 2x4+x2+3 >0
=> đa thức trên k có nghiệm........
ta có: 2x4 >=0; x2>=0; 3>0
Suy ra: 2x4 + x2 + 3 >0 hay G(x) khác 0
vậy G(x) vô nghiệm
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
M (x)- N (x)
= \(3x^4+5x^3-3x^2+4x-2\) - \(2x^4-5x^3+4x^2-4x+5\)
= \(x^4+x^2+3\)
Do \(x^4\ge0\) ( với mọi x )
\(x^2\ge0\) ( với mọi x )
=> \(x^4+x^2+3>0\) ( với mọi x )
Vậy M(x) - N(x) vô nghiệm
TA có;
x^2 >= 0 với mọi x
=> 2x^2 >= 0 với mọi x
=> x^2 + 2x^2 >= 0
=> 2 + x^2 + 2x^2 >= 2 > 0
=> Đa thức không có nghiệm
\(2+2x^2+x^2=3x^2+2>0\)
=> Đa thức không có nghiệm vì dấu đẳng thức không xảy ra
:))
\(P\left(x\right)+Q\left(x\right)=x^3+x^2+x+2+x^3-x^2-x+2=2x^3+3\)
Lời giải:
Để chứng minh đa thức $M(x)$ không có nghiệm, ta chứng minh \(M(x)\neq 0, \forall x\in\mathbb{R}\). Thật vậy:
\(M(x)=2x^2+2x+3=2(x^2+x)+3=2(x^2+x+\frac{1}{4})+\frac{5}{2}\)
\(=2(x+\frac{1}{2})^2+\frac{5}{2}\geq \frac{5}{2}>0, \forall x\in\mathbb{R}\)
\(\Rightarrow M(x)\neq 0, \forall x\in\mathbb{R}\)
Do đó $M(x)$ không có nghiệm (đpcm)