K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

\(M=5x^2+2y^2+4xy-2x+4y+6\)

\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\)

Do \(\left(2x+y\right)^2\ge0\forall x;y\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y\)

\(\Rightarrow M\ge1>0\forall x;y\)

\(\left(đpcm\right)\)

21 tháng 8 2019

\(Q=5x^2+2y^2+4xy+2x+4y+2009\)

\(Q=\left(4x^2+4xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+2004\)

\(Q=\left(2x+y\right)^2+\left(x+1\right)^2+\left(y+2\right)^2+2004>0\) với \(\forall x\)

21 tháng 8 2019

chu vi hình chữ nhật là 4/5 . chiều rộng bang 4/5 chiềudài . tính diẹn tích hình chữ nhật đó

15 tháng 9 2019

\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\) 

\(=\left(x-1\right)^2\)  + (y-2)^2            +  1

Xét nữa là xong

  

10 tháng 7 2017

A = x2 - x + 1

A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)

A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

B = (x - 2)(x - 4) + 3

B = x2 - 4x - 2x + 8 + 3

B = x2 - 6x + 11

B = x2 - 2.3.x + 9 + 3

B = \(\left(x-3\right)^2+3>0\)

10 tháng 7 2017

C = 2x2 - 4xy + 4y2 + 2x + 5

C = (x2 - 4xy + 4y2) + x2 + 2x + 5

C = (x - 2y)2 + (x2 + 2x + 1) + 4

C = (x - 2y)2 + (x + 1)2 + 4

Xét biểu thức C thấy : 

Có 2 hạng tử không âm (vì là bình phương)

Vậy C > 0 

23 tháng 8 2018

\(A=2x^2-3y+8x+y^2+11\)

\(=\left(2x^2+8x+8\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)

\(=2\left(x^2+4x+4\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)

\(=2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}\)

Vì: \(2\left(x+2\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x,y\)

\(\Rightarrow2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}>0\forall x,y\)

=.= hok tốt!!

23 tháng 8 2018

Ta có\(A=2x^2-3y+8x+y^2+11\)

\(=2.\left(x^2+2.x.4+4^2\right)-5-3y+y^2\)

\(=2.\left(x+4\right)^2+\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)-5-\frac{9}{4}\)

\(=2.\left(x+4\right)^2+\left(y-\frac{3}{2}\right)^2-\left(5+\frac{9}{4}\right)< 0\)với mọi x

Không thể làm luôn dương được , chắc mình sai , thôi góp ý vậy

23 tháng 8 2018

Bài a:

1) \(x^2+4y^2-4x-4y+2016\)

\(=\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)+2011\)

\(=\left(x-2\right)^2+\left(2y-1\right)^2+2011\)

\(\left(x-2\right)^2\ge0\)

\(\left(2y-1\right)^2\ge0\)

\(2011>0\)

\(\Rightarrow\left(x-2\right)^2+\left(2y-1\right)^2+2011>0\)

Vậy biểu thức trên luôn dương với mọi giá trị của biến

2) \(4x^2+4xy+17y^2-8y+1\)

\(=\left(4x^2+4xy+y^2\right)+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\)

\(\left(2x+y\right)^2\ge0\)

\(\left(4y-1\right)^2\ge0\)

\(\Rightarrow\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Vậy biểu thức trên luôn dương với mọi giá trị của biến

3) \(2x^2-5x+13\)

\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{13}{2}\right)\)

\(=2\left(x^2-2.x.\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{25}{16}+\dfrac{13}{2}\right)\)

\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{79}{8}\)

\(2\left(x-\dfrac{5}{4}\right)^2\ge0\)

\(\dfrac{79}{8}>0\)

\(\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{79}{8}>0\)

Vậy biểu thức trên luôn dương với mọi giá trị của biến x

Bài b:

1) \(3x^2+y^2+10x-2xy+26=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+26\right)=0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x^2+5x+13\right)=0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x^2+2.x.\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}+13\right)=0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{27}{2}=0\)

\(\left(x-y\right)^2\ge0\)

\(2\left(x+\dfrac{5}{2}\right)^2\ge0\)

\(\dfrac{27}{2}>0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{27}{2}>0\)

Vậy không có các số x,y thỏa mãn đẳng thức trên

2) \(3x^2+6y^2-12x-20y+40=0\)

\(\Rightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y\right)+40=0\)

\(\Rightarrow3\left(x^2-4x+4\right)+6\left(y^2-\dfrac{3}{10}y\right)+28=0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y^2-2.y.\dfrac{3}{20}+\dfrac{9}{400}-\dfrac{9}{400}\right)+28=0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2-\dfrac{27}{200}+28=0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2+\dfrac{5573}{200}=0\)

\(3\left(x-2\right)^2\ge0\)

\(6\left(y-\dfrac{3}{20}\right)^2\ge0\)

\(\dfrac{5573}{200}>0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2+\dfrac{5573}{200}>0\)

Vậy biểu thức trên không có giá trị x,y thỏa mãn

23 tháng 8 2018

Cảm ơn b nhiều đúng lúc mk cần gấp

23 tháng 9 2020

a) x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

b) 4x2 - 2x + 1 = 4( x2 - 1/2x + 1/16 ) + 3/4 = 4( x - 1/4 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

c) x4 - 3x2 + 9 (*)

Đặt t = x2

(*) <=> t2 - 3t + 9 = ( t2 - 3t + 9/4 ) + 27/4 = ( t - 3/2 )2 + 27/4 = ( x2 - 3/2 )2 + 27/4 ≥ 27/4 > 0 ∀ x ( đpcm )

d) x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

e) x2 + y2 - 2x - 2y + 2xy + 2 = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + 1

                                              = [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + 1 

                                              = [ ( x + y )2 - 2( x + y ) + 12 ] + 1

                                              = ( x + y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

23 tháng 9 2020

a) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

b) \(4x^2-2x+1=4\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

c) \(x^4-3x^2+9=\left(x^4-3x^2+\frac{9}{4}\right)+\frac{27}{4}=\left(x^2-\frac{3}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)

d) \(x^2+y^2-2x-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\left(\forall x,y\right)\)

e) \(x^2+y^2-2x-2y+2xy+2\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1+1\)

\(=\left(x+y-1\right)^2+1>0\left(\forall x,y\right)\)

29 tháng 12 2017

a) A=\(x^2-4xy+4y^2+1=\left(x^2-4xy+4y^2\right)+1=\left(x^2-2x2y+\left(2y\right)^2\right)+1=\left(x-2y\right)^2+1\)

Do \(\left(x-2y\right)^2\)>=0

=>\(\left(x-2y\right)^2\)+1>=1

=>\(\left(x-2y\right)^2\)+1>0

=>\(x^2-4xy+4y^2+1\)>0

Vậy A>0 với mọi x,y

b) Ta có A=\(x^2-4xy+4y^2+1=\left(x-2y\right)^2+1\)

Thay x-2y=4 vào biểu thức (x-2y)\(^2\) ta có:

4\(^2\)+1=16+1=17

Vậy giá trị của A tại x-2y=4 là 17

29 tháng 12 2017

a.

\(A=x^2-4xy+4y^2+1\\ =\left(x^2-2.x.2y+\left(2y\right)^2\right)+1\\ =\left(x-2y\right)^2+1\ge1>0\)

b.

\(x-2y=4\\ \Rightarrow A=\left(x-2y\right)^2+1=16+1=17\)