Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)
\(=0+0+0+0-15\)
\(=-15\)
\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)
\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)
\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)
\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)
\(=0+0+0-18\)
\(=-18\)
\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)
\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)
\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)
\(=x^3-8y^3-3+8y^3\)
\(=x^3-3\)
\(4\left(x-6\right)-x^2\left(3x+1\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-3x^3-x^2+5x^2-4x+3x^3-3x^2\)
\(=-24-x^2\) ( sai đề )
\(xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)
\(=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3\)
\(=3\)
\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)
\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)
2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)
\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)
3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)
\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)
(3x-3y)3+27(y-x)3
<=> 27(x-y)3-27(x-y)3 = 0 ( hằng số )
~> Giá trị không phụ thuộc vào biến =]]
a) 2(2x+x^2) - x^2 ( x+2 ) + x^3 - 4x + 3
\(=4x+2x^2-x^3-2x^2+x^3-4x+3\)
\(=3\)
=>giá trị của biểu thức ko phụ thuộc vào giá trị của biến
b) x(x^2+x+1) - x^2 (x+1)-x+5
\(=x^3+x^2+x-x^3-x^2-x+5\)
\(=\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)
\(=5\)
B=2.(x^2-3)-x^2.(3y+2)+3.(x^2y+4)
\(B=2x^2-6-3x^2y-2x^2+3x^2y+12\)
\(B=6\)
Vậy biểu thức trên ko phụ thuộc vào biến