Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2016}+4}{21}-\frac{10^{2017}+5}{63}\)
\(A=\frac{3x\left(10^{2016}+4\right)}{63}-\frac{10^{2017}+5}{63}\)
\(A=\frac{3x10^{2016}+12}{63}-\frac{10^{2017}+5}{63}\)
\(A=\frac{\left(3x10^{2016}+12\right)-\left(10^{2017}+5\right)}{63}\)
\(A=\frac{3x10^{2016}+12-10^{2017}-5}{63}\)
\(A=\frac{\left(3x10^{2016}-10^{2017}\right)+7}{63}\)
\(A=\frac{10^{2016}x\left(3-10\right)+7}{63}\)
\(A=\frac{10^{2016}x\left(-7\right)+7}{63}\)
\(A=\frac{-10^{2016}x7+7}{63}\)
\(A=\frac{7x\left(-10^{2016}+1\right)}{63}\)
\(A=\frac{7x\left(10^{2016}-1\right)}{63}\)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 102016 có tổng các chữ số là 1
=> 102016 - 1 chia hết cho 9
=> 7 x (102016 - 1) chia hết cho 63
=> 7 x (102016 - 1) / 63 nguyên
=> A nguyên
Chứng tỏ A nguyên