K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

A=(x+1)(x+2)(x+3)(x+4)+24 chia hết cho x+5 mới Đúng

27 tháng 11 2019

Quên -24

30 tháng 7 2019

A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24 (*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết (x + 5)(Với x ≠ -5)

Vậy A chia hết (x + 5)(Với x ≠ -5)

2 tháng 9 2019

Sai đề à bn?

Sửa lại đề:

a) (x + 5)2 = (x + 5)(x – 5)

\(\Leftrightarrow\)(x + 5)2 - (x + 5)(x - 5) = 0

\(\Leftrightarrow\)(x + 5)(x - 5 + x + 5) = 0

\(\Leftrightarrow\) (x + 5).10 = 0

\(\Leftrightarrow\) x + 5 = 0

\(\Leftrightarrow\) x = -5

Vậy: x = -5

2 tháng 9 2019

b, A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24 (*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết (x + 5)(Với x ≠ -5)

Vậy A chia hết (x + 5)(Với x ≠ -5)

18 tháng 11 2019

Ta có: A = (x + 1)(x + 2)(x + 3)(x + 4) - 24

A = (x + 1)(x + 4)(x + 2)(x + 3) - 24

A = (x2 + 5x + 4)(x2 + 5x + 6) - 24

Đặt x2 + 5x + 4 = k

=> k(k + 2) - 24 = k2 + 2k - 24 = k2 + 6k - 4k - 24 = k(k + 6) - 4(k + 6) = (k - 4)(k + 6)

      => (x2 + 5x + 4 - 4)(x2 + 5x +  4 + 6) = (x2 + 5x)(x2 + 5x + 10) = x(x  + 5)(x+ 5x + 10)

Do x + 5 \(⋮\)x + 5 => x(x + 5)(x2 + 5x + 10) \(⋮\)x + 5

18 tháng 11 2019

thế cần CM cho x khác 5 ko

21 tháng 7 2017

Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)

Vậy: A chia hết cho x (Với x ≠ 0)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

6 tháng 8 2019

Ta có:\(\left(x+3\right)^2=\left(x+3\right)\left(x-3\right)\)

Xét \(x+3=0\Rightarrow x=-3\)

Xét \(x+3\ne0\) ta có:

\(x+3=x-3\)

\(\Rightarrow0=6\left(VL\right)\)

Vậy \(x=-3\)

a) 

(x + 3)2 = (x + 3)(x – 3)

⇔ (x + 3)2 - (x + 3)(x - 3) = 0

⇔ (x + 3)(x + 3 - x + 3) = 0

⇔ 6(x + 3) = 0

⇔ x = -3

Vậy: x = -3

b) Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t - 25)(t + 25)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

(x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)

Vậy: A chia hết cho x (Với x ≠ 0)

24 tháng 10 2019

3x2+4x-7 ⇔ 3x\(^2\) -3x + 7x - 7 ⇔ 3x( x - 1 ) + 7 ( x - 1 )

⇔ (3x + 7 ) ( x - 1 )

\(\Leftrightarrow\left[{}\begin{matrix}3x+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{3}\\x=1\end{matrix}\right.\)

25 tháng 10 2019

phân tích thành nhân tử thôi mà bn

12 tháng 9 2016

bbbbbbbbb

23 tháng 6 2019

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6

           = -6a - 6 = -6(a + 1) \(⋮\)6

<=> -6(a + 1) \(⋮\)\(\forall\)\(\in\)Z

<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)\(\in\)Z

6. Thay x = 99 vào biểu thức A, ta có:

A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9

A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9

A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9

A = 99 - 9 

A = 90

Vậy ....

Bài 3:

(3x-1)(2x+7)-(x+1)(6x-5)=16.

=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16

=>  6x2+21x-2x-7-6x2+5x-6x+5=16

=> 18x-2=16

=> 18x=16+2

=> 18x=18

=> x=1

Bài 4:

ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)⋮6\)

⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)

Bài 6:

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)

\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)

Thay 99=x, ta được:

\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)

\(\Rightarrow A=x-9\)

Thay x=99 ta được:

\(A=99-9=90\)