Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) khi a hoặc b là 2 số âm và dương
Nhân cả 2 vế với 2
Xét hiệu
2(a2+b2+c2 )-2(ab+ac+bc)
=2a2+2b2+2c2 -2ab -2ac -2bc
=a2-2ab+b2+b2-2bc+b2+c2-2ac+a2
=(a-b)2+(b-c)2+(c-a)2 luôn luôn lớn hợn hoặc =0
nên a2+b2+c2 lớn hơn hoặc bằng ab-ac-bc dấu "=" xảy ra khi a=b=c
Nhân cả 2 vế với 2
Xét hiệu
2(a2+b2+c2 )-2(ab+ac+bc)
=2a2+2b2+2c2 -2ab -2ac -2bc
=a2-2ab+b2+b2-2bc+b2+c2-2ac+a2
=(a-b)2+(b-c)2+(c-a)2 luôn luôn lớn hợn hoặc =0
nên a2+b2+c2 lớn hơn hoặc bằng ab-ac-bc dấu "=" xảy ra khi a=b=c
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow a+b+2\sqrt{ab}-a-b\ge0\)
\(\Leftrightarrow2\sqrt{ab}\ge0\) luôn luôn đúng với \(a,b\ge0\)
=> đpcm
Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
Dấu \("="\) xảy ra khi a = b.
Cauchy-shwarz:
\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow bx^2\left(a+b\right)+ay^2\left(a+b\right)\ge\left(x+y\right)^2ab\)
\(\Leftrightarrow\left(abx^2-abx^2\right)+\left(aby^2-aby^2\right)+\left(bx\right)^2-2bxay+\left(ay\right)^2\ge0\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) luôn đúng
Dấu \("="\) xảy ra khi \(bx=ay\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)
|a|+|b|\(\ge\)|a+b| (1)
Bình phương 2 vế của (1) ta có:
(|a|+|b|)2\(\ge\)(|a+b|)2
=>a2+2|ab|+b2\(\ge\)a2+2ab+b2
=>|ab|\(\ge\)ab (luôn đúng)
BĐT cuối đúng ->(1) dc chứng minh
Dấu = khi ab\(\ge\)0