Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 3+32+33+...+32021
A = ( 3+32+33 )+ (34 + 35 + 36 )+ .... +( 32019 + 32020 + 32021)
A = 3. (1 + 3 + 32) + 34 . (1 + 3 + 32) + .... + 32019. (1 + 3 + 32)
A = 3 . 13 + 34 . 13 + ... + 32019 . 13
A = 13 . (3 + 34 + .... + 32019) chia hết cho 13.
Vậy tổng của A chia cho 13 có số dư là 0
S=1+32+34+36+.............................+398
9S=3+34+36+38+.........................+3100
=> 9S-S=3100-1
3100-1=(34)25-1
=(...1)25-1
=(.....1)-1
=(.....0) chia hết cho 10
Vậy S chia hết cho 10
a, \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{100}\)
\(\Rightarrow3^2S-S=\left(3^2+3^4+3^6+3^8+...+3^{100}\right)-\left(1+3^2+3^4+3^6+...+3^{98}\right)\)
\(\Rightarrow8S=3^{100}-1\)
\(\Rightarrow S=\frac{3^{100}-1}{8}\)
Vậy : \(S=\frac{3^{100}-1}{8}\)
b, \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(S=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(S=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)
\(S=1.10+3^4.10+...+3^{96}.10\)
\(S=\left(1+3^4+...+3^{96}\right).10\)
Vì : \(1+3^4+...+3^{96}\in N\Rightarrow S⋮10\)
Vậy : \(S⋮10\)
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7+...+2^{98}.7\)
\(\Rightarrow A=\left(2+2^4+...+2^{98}\right).7⋮7\)
\(\Rightarrow A⋮7\)
b)\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+....+2^{96}.31\)
\(=31.\left(2+....+2^{96}\right)⋮31\)
Vậy...
a) \(5+5^2+5^3+...+5^{2004}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{2003}+5^{2004}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{2003}.6\)
\(=6.\left(5+5^3+...+5^{2003}\right)⋮6\)
Vậy....
\(5+5^2+5^3+...+5^{2004}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6+\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{2002}.31\)
\(=31.\left(5+5^4+...+5^{2002}\right)⋮31\)
Vậy...
Trường hợp 3 làm tương tự để chứng minh
a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100
⇒ S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )
⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )
⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5
⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )
Vì 5 ⋮ 5 ⇒ S ⋮ 5 ( đpcm )
Câu b tương tự .
nhận xét: 22+23 + 24 +25 = 60, 60 chia hết cho 5
Khi đó, A= (22+23 + 24 +25) + (26 + 27 + 28 + 29) +.....+ (297 +298 +299+2100)
= (22+23 + 24 +25) + 24 (22+23 + 24 +25)+.......+ 296 (22+23 + 24 +25)
= 1+24 + ....+296. (22+23 + 24 +25) chia hết cho 60 ; 60 chia hết cho 5
=> A chia hết cho 5
Vậy A chia hết cho 5
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...\left(2^{99}+2^{100}\right)\)
\(=6+2^2.6+...+2^{98}.6⋮6\)
TL
=(2+22)+(23+24)+...(299+2100)
=6+26.6+...+298.6 chia hết cho 6
Hok tốt