Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 1+ 5+ 5^2+ 5^3+ ... + 5^96+ 5^97+ 5^98
=(1+5+52)+(53+54+55)+....+(596+597+598)
=31+(53.1+53.5+53.52)+....+(596.1+597.5+598.52)
=31+53.(1+5+52)+....+596.(1+5+52)
=31.1+53.31+...+596.31
=31.(1+53+...+596)
=> B chia hết cho 31
B = 1+5+52+53+....+598
B = (1+5+52)+(53+54+55)+....+(596+597+598)
B = 1(1+5+52)+53(1+5+52)+....+596(1+5+52)
B = 1.31 + 53.31+.......+596.31
B = 31.(1+53+.....+596) chia hết cho 31 (đpcm)
a)abc chia hết 27
=>abc chia hết 3 và 9
mà abc chia hết 9 thì 100% chia hết 3
mà abc chia hết 9=>(a+b+c) chia hết 9
=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3
=>bca chia hết 27
a ) vì abc chia hết cho 27
=> bca chia hết cho 27 ( hiển nhiên đúng )
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
B = 5 + 5² + 5³ + ... + 5⁹⁰
= (5 + 5² + 5³) + (5⁴ + 5⁵ + 5⁶) + ... + (5⁸⁸ + 5⁸⁹ + 5⁹⁰)
= 5.(1 + 5 + 5²) + 5⁴.(1 + 5 + 5²) + ... + 5⁸⁸.(1 + 5 + 5²)
= 5.31 + 5⁴.31 + ... + 5⁸⁸.31
= 31.(5 + 5⁴ + ...+ 5⁸⁸) ⋮ 31
Vậy B ⋮ 31
\(B=5+5^2+5^3+...+5^{89}+5^{90}\)
Ta có: \(B=\left(5+5^2+5^3\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)
\(B=155+...+5^{87}.\left(5+5^2+5^3\right)\)
\(B=155+...+5^{87}.155\)
\(B=155.\left(1+...+5^{87}\right)\)
Vì \(155⋮31\) nên \(155.\left(1+...+5^{87}\right)⋮31\)
Vậy \(B⋮31\)
\(#WendyDang\)
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
\(A=1+5^1+5^2+...+5^{101}\)
\(A=\left(1+5^1+5^2\right)+...+\left(5^{99}+5^{100}+5^{101}\right)\)
\(A=\left(1+5^1+5^2\right)+...+5^{99}.\left(1+5^1+5^2\right)\)
\(A=31+...+5^{99}.31\)
\(A=31.\left(1+...+5^{99}\right)⋮31\left(đpcm\right)\)