K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(A=1+5^1+5^2+...+5^{101}\)

\(A=\left(1+5^1+5^2\right)+...+\left(5^{99}+5^{100}+5^{101}\right)\)

\(A=\left(1+5^1+5^2\right)+...+5^{99}.\left(1+5^1+5^2\right)\)

\(A=31+...+5^{99}.31\)

\(A=31.\left(1+...+5^{99}\right)⋮31\left(đpcm\right)\)

6 tháng 8 2015

B= 1+ 5+ 5^2+ 5^3+ ... + 5^96+ 5^97+ 5^98

=(1+5+52)+(53+54+55)+....+(596+597+598)

=31+(53.1+53.5+53.52)+....+(596.1+597.5+598.52)

=31+53.(1+5+52)+....+596.(1+5+52)

=31.1+53.31+...+596.31

=31.(1+53+...+596)

=> B chia hết cho 31

 

6 tháng 8 2015

B = 1+5+52+53+....+598

B = (1+5+52)+(53+54+55)+....+(596+597+598)

B = 1(1+5+52)+53(1+5+52)+....+596(1+5+52)

B = 1.31 + 53.31+.......+596.31

B = 31.(1+53+.....+596) chia hết cho 31 (đpcm)

1 tháng 11 2015

31.(1+5^3+5^4+...+5^402) chia hết cho 31(dpcm)

12 tháng 12 2016

Tớ nghĩ nên phải đổi số 5^4 thành 5^5

25 tháng 12 2024

=(5+52+53)+54??? đề bài sai r, ko lm dc

16 tháng 5 2016

a)abc chia hết 27

=>abc chia hết 3 và 9

mà abc chia hết 9 thì 100% chia hết 3

mà abc chia hết 9=>(a+b+c) chia hết 9

=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3

=>bca chia hết 27

16 tháng 5 2016

a ) vì abc chia hết cho 27 

=> bca chia hết cho 27 ( hiển nhiên đúng )

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

2 tháng 11 2023

B = 5 + 5² + 5³ + ... + 5⁹⁰

= (5 + 5² + 5³) + (5⁴ + 5⁵ + 5⁶) + ... + (5⁸⁸ + 5⁸⁹ + 5⁹⁰)

= 5.(1 + 5 + 5²) + 5⁴.(1 + 5 + 5²) + ... + 5⁸⁸.(1 + 5 + 5²)

= 5.31 + 5⁴.31 + ... + 5⁸⁸.31

= 31.(5 + 5⁴ + ...+ 5⁸⁸) ⋮ 31

Vậy B ⋮ 31

2 tháng 11 2023

\(B=5+5^2+5^3+...+5^{89}+5^{90}\)

Ta có: \(B=\left(5+5^2+5^3\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)

\(B=155+...+5^{87}.\left(5+5^2+5^3\right)\)

\(B=155+...+5^{87}.155\)

\(B=155.\left(1+...+5^{87}\right)\)

Vì \(155⋮31\) nên \(155.\left(1+...+5^{87}\right)⋮31\)

Vậy \(B⋮31\)

\(#WendyDang\)

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j